
www.nzdl.org

THE GREENSTONE DIGITAL
LIBRARY SOFTWARE

Ian H. Witten and Stefan Boddie

Department of Computer Science
University of Waikato, New Zealand
ihw@cs.waikato.ac.nz, sjboddie@cs.waikato.ac.nz

The Greenstone Digital Library Software from the New Zealand Digital
Library project provides a new way of organizing information and
making it available over the Internet. This rapidly developing system has
already been adopted by organizations ranging from United Nations
agencies to universities and government organizations. Greenstone is
open-source software, available from the New Zealand Digital Library
(www.nzdl.org) under the terms of the Gnu public license.

Software features

A Greenstone digital library is organized as a set of separate collections.
A collection of information comprises several (typically several thousand,
or several million) documents, and a uniform interface to these
documents. A library may comprise several different collections, each
organized in a different way—though there is a strong family
resemblance in the way collections are presented.

Accessible via Web
browser

Collections are accessed through a standard Web browser (Netscape or
Internet Explorer) and combine easy-to-use browsing with powerful
search facilities.

Full-text and fielded
search

Searching is full-text, and the user can choose between indexes built from
different parts of the documents. For example, some collections have an
index of full documents, an index of sections, an index of titles, and an

2 THE GREENSTONE DIGITAL LIBRARY SOFTWARE

index of authors, each of which can be searched for particular words or
phrases. Results can be ranked by relevance or sorted by a metadata
element.

Flexible browsing
facilities

Browsing involves hierarchical lists that the user can examine: lists of
authors, lists of titles, lists of dates, classification structures, and so on.
Different collections may offer different browsing facilities. Indexes for
both browsing and searching are constructed during the building process,
according to collection configuration information.

Creates access
structures
automatically

The Greenstone software facilitates maintainability by creating all
searching and browsing structures directly from the documents
themselves. No links are inserted by hand. This means that if new
documents in the same format become available, they can be merged into
the collection automatically. Indeed, for many collections this is done by
processes that wake up regularly, scout for new material, and rebuild the
indexes—all without manual intervention.

Makes use of available
metadata

Metadata, which is descriptive information such as author, title, date,
keywords, and so on, may be associated with each document, or with
individual sections within documents. Metadata is used as the raw
material for browsing indexes. It must either be provided explicitly or be
derivable automatically from the source documents. The Dublin Core
metadata scheme is used for most electronic documents, however,
provision is made for other schemes.

Plugins extend the
system’s capabilities

In order to accommodate different kinds of source documents, the
software is organized in such a way that “plugins” can be written for new
document types. Plugins currently exist for plain text documents, HTML
documents, some proprietary formats, and for recursively traversing
directory structures containing such documents. A collection may have
source documents in different forms. In order to build browsing indexes
from metadata, an analogous scheme of “classifiers” is used: classifiers
create browsing indexes of various kinds based on metadata.

Designed for multi-
gigabyte collections

Collections can contain millions of documents, making the Greenstone
system suitable for collections up to several gigabytes.

Documents can be in
any language

Unicode is used throughout the software, allowing any language to be
processed in a consistent manner. To date, collections have been built
containing French, Spanish, Maori, Chinese, Arabic and English. On-the-
fly conversion is used to convert from Unicode to the user’s encoding
choice.

THE GREENSTONE DIGITAL LIBRARY SOFTWARE 3

Web interface
available in multiple
languages

The interface can be presented in multiple languages. Currently, the
interface is available in French, Spanish, German, Maori, Chinese, Arabic
and English.

Collections can
contain text, pictures,
audio, and video

Greenstone collections can contain text, pictures, audio and even video
clips. Most non-textual material is either linked in to the textual
documents or accompanied by textual descriptions (such as figure
captions) to allow full-text searching and browsing. However, the
architecture permits implementation of plugins and classifiers even for
non-textual data.

Uses advanced
compression
techniques

Compression techniques are used to reduce the size of the indexes and
text. Reducing the size of the indexes via compression has the added
advantage of increasing the speed of text retrieval.

Collections can be
published on the
Internet

The software can be used to serve collections over the World-Wide Web.
When operating in this mode the software runs under Unix, Windows 95,
98 and NT.

Collections can be
published on CD-ROM

Although primarily designed for Internet access over the World-Wide
Web, Greenstone collections can be made available, in precisely the same
form, on CD-ROM. The user interface is through a standard Web browser
(Netscape is provided on each disk), and the interaction is identical to
accessing the collection on the Web—except that response times are more
predictable. The CD-ROM system works under Windows 3.x, 95, 98, and
NT operating systems. The use of compression ensures that the greatest
possible volume of information can be packed on to a CD-ROM.

See it in action

The New Zealand Digital Library website (www.nzdl.org) contains
numerous example collections, all created with the Greenstone software,
that are publicly available for you to peruse. They exemplify various
searching and browsing options, and include collections in Arabic,
Chinese, French, Maori, and Spanish, as well as English. There are in
addition some musical collections. Note that this is a research website and
changes occur as we make progress in our work.

The Humanity Development Library is a CD-ROM containing 1,230
publications ranging in subject from accounting to water sanitation. It
runs under Windows 3.x, 95, 98, and NT, and sample copies can be
obtained from greenstone@cs.waikato.ac.nz. The information contained
in the CD-ROM can be accessed by searching, browsing by subject,
browsing by titles, browsing by organization, browsing a list of how-tos,
and by randomly viewing the book covers.

4 THE GREENSTONE DIGITAL LIBRARY SOFTWARE

About this manual

This manual provides a comprehensive introduction to the software and
its capabilities. It is divided into four main parts, corresponding to
different kinds of use.

The first part (A) gives an overview of the capabilities of the software,
and includes a comprehensive glossary of terms used throughout the
manual.

The second part (B) is targeted at end users of Greenstone collections. It
begins by describing the very simple installation procedure for CD-
ROMs. Following that there is a complete account of how to find
information in Greenstone collections. In fact, the interface is fairly self-
explanatory—the best way to learn is by doing—and this section
essentially comprises the on-line help information for a typical collection.

The third part (C) is for those who want to build their own library
collections using Greenstone. To do this, you first need some
understanding of the files and file structure used within the system, and
the overall process of creating a collection—which involves assembling
the source documents, “importing” them into the Greenstone system, and
then “building” the full-text indexes and browsing structures.

Next we show how to update an existing collection by adding new
material and rebuilding it. This is easy to do: the software is designed for
ease of maintenance of digital library collections. Building a new
collection from scratch can be more challenging. It is easy if there is an
existing collection that can be used as an exact model, with the same
source file structure and the same kind and format of metadata—for then
you can just copy the relevant specifications for the existing collection
and rebuild. For genuinely new collections, we describe the “plugins” that
are available to accommodate different document formats, and the
“classifiers” that are available to build browsing structures—like sorted
lists of names or dates, or hierarchical browsers for classification
hierarchies. We also describe how you can control the format of what is
presented on the screen.

The fourth part (D) describes how to install the full Greenstone software
on Unix systems and on Windows 95/98/NT. Most users will not need to
do this, and can skip this section. It describes how to put a collection onto
a standalone Greenstone CD-ROM that can be distributed for others to
use. It gives an account of the directory structure in which the software
resides. It is possible to turn on and off user logging, and the log file
format is described. There is a maintenance and administration facility

THE GREENSTONE DIGITAL LIBRARY SOFTWARE 5

that allows administrators to examine and control various aspects of a
Greenstone installation. Finally we discuss how to translate the interface
into other languages that are not yet supported.

The Greenstone software is developing rapidly, and documenting a
moving target is difficult. At this stage there are several small things left
to do. In some cases these are described here as though they were
complete; these sections have been highlighted. Most of the highlighting
will be removed shortly.

www.nzdl.org

Contents

THE GREENSTONE DIGITAL LIBRARY SOFTWARE 1

Software features 1

See it in action 3

About this manual 4

A—OVERVIEW OF GREENSTONE 6

Glossary 11

B—USING GREENSTONE COLLECTIONS 15

B.1 Using a Greenstone CD-ROM 15

B.2 Finding information in a Greenstone collection 16
How to find information 17
How to read the books 18
What the icons mean 19
How to search for particular words 19
Scope of queries 21
Advanced search features 21

B.3 Changing your preferences 22
Collection preferences 23
Presentation preferences 23
Search preferences 23

C —BUILDING COLLECTIONS 24

C.1 The files in a Greenstone collection 24

CONTENTS 7

Files and directories 25
Creating a collection 26
The imported documents 27
Inside the documents 28
The GML format 29

C.2 Updating existing collections 31
What you have to do 31
Example 34
How it works 34

C.3 Creating new collections 35
The collection configuration file 36
Plugins 40
Classifiers 43
Format strings 47
Examples of classifiers and format strings 48
Subcollections and language-specific indexes 51

D—INSTALLING THE GREENSTONE SOFTWARE 53

D.1 Installing on Unix 54

D.2 Installing on Windows 55
Installing binaries 55
Installing the source code 56

D.3 Making a Greenstone CD-ROM 57

D.4 Configuration files 60

D.5 Where to find the software 61

D.6 User logs 63

D.7 Maintenance and administration 64
User management 64
Information 66
Collections 66
Logs 67

D.8 Translating the interface into other languages 67

www.nzdl.org

A
Overview of Greenstone

A Greenstone digital library is organized as a set of independent
collections. A collection of information comprises several (typically
several thousand, or several million) documents, and a uniform interface
is provided to all documents in a collection. The collections in a library
are each organized in a different way—though there is a strong family
resemblance in the way collections are presented.

Collections are accessed through a standard Web browser (for instance,
Netscape or Internet Explorer) and combine easy-to-use browsing with
powerful search facilities. There are several ways to find information in
most Greenstone collections. For example, you can search for particular
words that appear in the text, or within a section of a document. You can
browse documents by title: just click on a book to read it. You can browse
documents by subject. Subjects are represented by bookshelves: just click
on a bookshelf to look at the books. Where appropriate, documents come
complete with a table of contents: you can click on a chapter or
subsection to open it, expand the full table of contents, or expand the full
document into your browser window (useful for printing). The
international Unicode character set is used internally, so documents can
be written in any language. The interface is available in English, French,
Spanish, German, Maori, Chinese, and Arabic. The New Zealand Digital
Library website (www.nzdl.org) provides numerous example collections.

Along with each collection is a statement of its purpose and coverage, and
an explanation of how the collection is organized. Most collections can be
accessed by both searching and browsing. Searching is full-text, and the
user can choose between indexes built from different parts of the
documents. Some collections have an index of full documents, an index
of sections, an index of paragraphs, an index of titles, and an index of
section headings, each of which can be searched for particular words or
phrases. Browsing involves lists that the user can examine: lists of
authors, lists of titles, lists of dates, hierarchical classification structures,
and so on. Different collections offer different browsing facilities. Indexes

OVERVIEW OF GREENSTONE 9

for both browsing and searching are constructed during a process called
building, according to instructions in a collection configuration file.

Rich Web browsing facilities can be provided by manually linking parts
of documents together and building explicit tables of contents and
indexes. However, manually-created structures are difficult to maintain,
and inevitably fall into disrepair when the collection expands. The
Greenstone software takes a different tack: it facilitates maintainability by
creating all searching and browsing structures automatically from the
documents themselves. No links are inserted by hand. This means that
when new documents in the same format become available, they can be
merged into the collection automatically. Indeed, for some collections this
is done by processes that wake up regularly, scout for new material, and
rebuild the indexes—all without manual intervention.

Collections comprise many documents: usually thousands, tens of
thousands, or even millions. Each document may be hierarchically
organized into sections (and subsections, and sub-subsections). Each
section comprises one or more paragraphs. Metadata, which is
descriptive information such as author, title, date, keywords, and so on,
may be associated with each document, or with individual sections of
documents. Metadata is the raw material for browsing indexes. It must
either be provided explicitly (for example, in a spreadsheet) or be
derivable automatically from the source documents. Metadata is
converted to a standard form (using the Dublin Core metadata scheme)
and stored with the document for internal use.

In order to accommodate different kinds of source documents, the
software is organized in such a way that “plugins” can be written for new
document types. Plugins currently exist for plain text documents, HTML
documents, some proprietary formats, and for recursively traversing
directory structures containing such documents. A collection may have
source documents in different forms: it is just a matter of specifying all
the necessary plugins. In order to build browsing indexes from metadata,
an analogous scheme of “classifiers” is used: classifiers create indexes of
various kinds based on metadata. Source documents are brought into the
Greenstone system through a process called importing, which uses
appropriate plugins and classifiers as specified in the collection
configuration file.

Greenstone collections can contain text, pictures, audio and even video
clips. Compression technology is used to ensure best use of storage.
Throughout the Greenstone software, the MG software is used for
compression and indexing (see Witten, I.H., Moffat, A. and Bell, T.
Managing Gigabytes: compressing and indexing documents and images,

10 OVERVIEW OF GREENSTONE

Morgan Kaufmann, second edition, 1999.) Most non-textual material is
either linked to the textual documents or accompanied by textual
descriptions (such as captions for photos) to allow full-text searching and
browsing.

The Greenstone system includes an “administrative” function that enables
specified users to examine the composition of all collections, protect
documents so that they can only be accessed by registered users on
presentation of a password, and so on. Logs of user activity are kept that
record all queries made to every Greenstone collection (though this
facility can be disabled).

Although primarily designed for Internet access over the World-Wide
Web, Greenstone collections can be made available, in precisely the same
form, on CD-ROM. A Greenstone CD-ROM can be used on a standalone
PC to access the information on the disk. The user interface is through a
standard Web browser (Netscape is provided on each CD), and the
interaction is identical to accessing the collection on the Web—except
that response times are faster and more predictable. If the PC is connected
to a network (intranet or Internet), the Greenstone software acts as a
network server, using a custom-built Web server provided on each CD, to
make exactly the same information available to others who need only use
their standard Internet browser software. The software works under all
Windows 3.X, 95, 98, and NT operating systems; it can be installed
straight off the CD-ROM in a matter of seconds. The use of compression
technology ensures that the greatest possible volume of information can
be packed on to a CD-ROM.

The collection-serving software operates under Unix (currently tested
under Linux and SunOS) and Windows NT, and works with all standard
Web servers. A flexible process structure allows different collections to
be served by different computers, yet be presented to the user in the same
way, on the same Web page, as part of the same digital library.
Collections can be updated and new ones brought on-line at any time,
without bringing the system down; the process responsible for the user
interface will notice (through periodic polling) when new collections
appear and add them to the list presented to the user. The software
architecture allows different parts of a collection to be distributed over
several computers, and different collections to be searched together, and a
single collection to be replicated on several computers and the user to
receive service, transparently, from the one that responds
quickest—though these are not yet implemented.

The Greenstone Digital Library Software is open-source software,
available from the New Zealand Digital Library (www.nzdl.org) under the

OVERVIEW OF GREENSTONE 11

terms of the Gnu public licence. The software includes everything
described above: Web serving, CD-ROM creation, collection building,
multi-lingual capability, plugins and classifiers for a variety of different
source document types. It includes an autoconfigure script to allow easy
installation on Unix systems. In the spirit of open-source software, users
are encouraged to contribute modifications and enhancements.

Glossary

Term Meaning

autoconf Unix program used to configure the Greenstone software installation
package to suit your system

Autorun Windows feature that starts a program automatically whenever a CD-
ROM is inserted

Boolean query Query to an information retrieval system that may contain AND, OR,
NOT

Browsing Accessing a collection by scanning an organized list of metadata values
associated with the documents (such as author, title, date, keywords)

buildcol.pl Program used to build collections

Building Process of creating the indexing and browsing structures that are used to
access a collection

C++ Programming language in which the majority of the Greenstone software
is written

Casefolding Making uppercase and lowercase words look the same, for searching
purposes

CGI Common Gateway Interface, a scheme that allows users to activate
programs on the host computer by clicking on Web pages

CGI script Code associated with a button, menu, or link on a Web page that specifies
what the host computer is to do when it is clicked

cgi-bin Directory in which CGI scripts are stored

Classifier Greenstone code module that examines document metadata to form an
index for browsing

Collection Set of documents that are brought together under a uniform searching and
browsing interface

Collection
configuration file

File that specifies how a collection is to be imported and built, what
indexes and language interfaces are to be provided, etc

Collection server Program responsible for providing access to a collection when it is being
used

Configuration file See collection configuration file, main configuration file, site
configuration file

CVS Concurrent Versioning System, a scheme for maintaining source code

12 OVERVIEW OF GREENSTONE

used throughout Greenstone

db2txt Tool for viewing a GDBM database as text (see GDBM)

Demo collection A subset of the Humanities Development Library, distributed with the
Greenstone software and used for illustration in this tutorial

Digital library Collection of digital objects (text, audio, video), along with methods for
access and retrieval, and for selection, organization, and maintenance

Document Basic unit from which digital library collections are constructed; it may
include text, graphics, sound, video, etc.

Dublin core A standard way of describing metadata

Fast CGI Facility that allows CGI scripts to remain continuously active so that they
do not have to be restarted from scratch every time they are invoked

Filter program That part of a collection server that implements querying and browsing
operations

Format string A string that specifies how documents and other listings are to be
displayed

GB-encoding Standard way of encoding Chinese and other oriental languages

GDBM Gnu DataBase Manager, a program used within the Greenstone software
to store metadata for each document

Gimp Gnu Image-Manipulation Program used (on Unix) to create icons in
Greenstone

GML Greenstone Markup Language, a file format used for storing documents
internally

Gnu license Software license that permits users to copy and distribute computer
programs freely, and modify them—so long as all modifications are made
publicly available

Greenstone The name of this digital library software

GSDL Abbreviation for Greenstone Digital Library

$GSDLHOME Operating system variable that represents the top-level directory in which
all Greenstone programs and collections are stored (%GSDLHOME% on
Windows systems)

$GSDLOS Operating system variable that represents the operating system currently
being used (%GSDLOS% on Windows systems)

hashfile Program used at import or build time to generate the OID of each
document

HDL Humanities Development Library, a Greenstone collection of
humanitarian information for developing countries

HTML HyperText Markup Language, the language in which Web documents are
written

import.pl Program used to import documents

OVERVIEW OF GREENSTONE 13

Importing Process of bringing collections of documents into the Greenstone system

Index Information structure that is used for searching or browsing a collection

InstallShield Windows program, used by Greenstone CD-ROMs, that allows a system
to be installed from a CD-ROM

Main configuration
file

File that contains specifications common to all collections served by this
site

Metadata Descriptive data such as author, title, date, keywords, and so on, that is
associated with a document (or document collection)

MG Managing Gigabytes, a program used by the Greenstone system for full-
text indexing, that incorporates compression techniques (see Witten, I.H.,
Moffat, A. and Bell, T. Managing Gigabytes: compressing and indexing
documents and images, Morgan Kaufmann, second edition, 1999)

mgbuild MG program for building a compressed full-text index

mgquery MG program for querying a compressed full-text index

mkcol.pl Program that creates and initializes the directory structure for a new
collection

New Zealand Digital
Library

Research project in the Computer Science Department at the University
of Waikato, New Zealand, that created the Greenstone software
(www.nzdl.org)

OID Object Identifier, a unique identification code associated with a document

Perl Programming language used for many of the text-processing operations
that occur during the building process

Ping Message sent to a system to determine whether it is running or not

Plugin Code module for handling documents of different formats, used during
the importing and building processes

Protocol Set of conventions by which a receptionist communicates with a
collection server

Ranked query Natural-language query to an information retrieval system, for which the
documents that match the query are sorted in order of relevance

Receptionist Program that organizes the Greenstone user interface

RTF Rich Text Format, a standard format for interchange of text documents

Searching Accessing a collection through a full-text search of its contents (or parts
of contents, such as section titles)

Server See Collection server, Web server

setup.sh, setup.csh,
setup.bat

Command used to set up your environment to recognize the Greenstone
software

Site configuration
file

File that contains specifications used to configure the Greenstone
software for the site on which it is installed

Stemming Stripping endings off a query term to make it more general

14 OVERVIEW OF GREENSTONE

STL Standard template library, a widely-available library of C++ code

txt2db Program used at build time to create the GDBM database

Unicode Standard scheme for representing the character sets used in the world’s
languages

UNU The United Nations University; also used to refer to a Greenstone
collection created for that organization

Web server Standard program that computers use to make information accessible over
the World Wide Web

www.nzdl.org

B
Using Greenstone collections

The Greenstone software is designed to be easy to use. Web-based and
CD-ROM collections have interfaces that are identical. Installing a CD-
ROM collection on any Windows computer is very easy indeed; a
standard installation setup program is used. A CD-ROM collection can be
used locally on the computer where it is installed; also, if this computer is
connected to a network, the software automatically and transparently
address to all other computers on the network to access the same
collection.

If the software is to be used on a Unix server, or if it will be put to serious
large-scale use as a Web server, it will be necessary to install the
complete Greenstone software and connect it to an existing Web server.
This is a more complex procedure because it requires auxiliary software
to be installed and may need special configuration options to be set. Most
Greenstone users will never have to undertake the installation of the
software on their computer; however, for those who do, the procedure is
described in section D below.

In Section B.2 we describe the searching and browsing facilities offered
by a typical Greenstone collection, the “Demo” collection that is supplied
with the Greenstone software. Other collections offer similar facilities; if
you can use one, you can use them all.

B.1 Using a Greenstone CD-ROM

To use a Greenstone CD-ROM, just put it into the CD-ROM drive on any
Windows PC. Most likely (if “autorun” is enabled on your PC), a window
will appear inviting you to install the Greenstone software. If not, find the
CD-ROM disk drive (on current Windows systems you can get this by
clicking on the My Computer icon on the desktop) and double-click it, or
the Setup.exe file inside it. In either case the Greenstone Setup program
will be entered, which guides you through the setup procedure. Most
people respond yes to all the questions except for the one which offers to

16 USING GREENSTONE COLLECTIONS

install the Netscape
browser; if you already
have a browser you
probably don’t need to
install a new one.

When the installation
procedure has finished,
you’ll find the library in the
Programs submenu of the
Windows Start menu, under
the name of the collection
(for example, “Humanity
Libraries” or “United
Nations University”). There
will be a Standalone
Version as well as a Server
or Network version, and an
Uninstall option which will

completely remove the library and associated software from your system
should you so desire. You should use the Server or Network version
whether or not you are connected to a network; the Standalone Version is
only supplied in case the system experiences difficulty in ascertaining
your network setup.

Once the software has been installed, the library will be entered
automatically every time you re-insert the CD-ROM if autorun is enabled.

B.2 Finding information in a Greenstone collection

The easiest way to learn to use a Greenstone collection is to try it out.
Don’t worry—you can’t break anything. Click liberally: most images that
appear on the screen are clickable. If you hold the mouse stationary over
an image, most browsers will soon pop up a message that tells you what
will happen if you click.

Experiment! Choose common words like “the” and “and” to search
for—that should evoke some hits, and nothing will break.

Greenstone digital library systems often comprise several separate
collections—for example, computer science technical reports, literary
works, internet FAQs, magazines. There will be a home page for the
digital library system which allows you to access any collection; in
addition, each collection has its own “about” page that gives you
information about how the collection is organized and the principles

Figure 1 Using the Demo collection

B.2 FINDING INFORMATION IN A GREENSTONE COLLECTIONS 17

governing what is included in it. To get back to the “about” page at any
time, just click on the “collection” icon that appears at the top left side of
all searching and browsing pages.

Figure 1 shows a screenshot of the “Demo” collection supplied with the
Greenstone software, which is a very small subset of the Humanity
Development Library collection; we will use it as an example to describe
the different ways of finding information. (If you can’t find the Demo
collection, use the Humanity Development Library instead; it looks just
the same.) First, almost all icons are clickable. Several icons appear at the
top of almost every page; Table 1 shows you what they mean.

Table 1 What the icons at the top of each page mean

This takes you to the “about” page

This takes you to the Digital Library’s home page, from which you can
select another collection

This provides help text similar to what you are reading now

This allows you to set some user interface and searching options that will
then be used henceforth

The “search … subjects … titles a-z … organization … how to” bar
underneath gives access to the searching and browsing facilities. The
leftmost button is for searching, and the ones to the right of it—four, in
this collection—evoke different browsing facilities. These may differ
from one collection to another.

How to find information

Table 2 shows the five ways to find information in the Demo collection.

You can search for particular words that appear in the text from the
“search” page. (This is just like the “about” page shown in Figure 1,
except that it doesn’t contain the about this collection text.) The search
page can be reached from other pages by pressing the search button. You
can access publications by subject by pressing the subjects button. This
brings up a list of subjects, represented by bookshelves. You can access
publications by title by pressing the titles a-z button. This brings up a list
of books in alphabetic order. You can access publications by organization
by pressing the organization button. This brings up a list of organizations.
You can access publications by how to listing by pressing the how to
button. This brings up a list of “how to” hints. You can see these buttons
in Figure 1.

18 USING GREENSTONE COLLECTIONS

Table 2 What the icons on the search/browse bar mean

Search for particular words

Access publications by subject

Access publications by title

Access publications by organization

Access publications by “how to” listing

How to read the books

In the Demo collection, you can tell when you have arrived at an
individual book because there is a photograph of its front cover (Figure
2). Beside the photograph is a table of contents with an arrow marking
where you are. This table is expandable: click on the folders to open them
or close them. Click on the open book at the top to close it.

Underneath is the text of the current section (Introduction and Summary
in the example, beginning at the very bottom of the illustration). When
you have read through it, there are arrows at the end to take you on to the
next section or back to the previous one.

Below the photograph are four buttons. Click on detach to make a new
browser window for this book. (This is useful if you want to compare

books, or read two at once.)
If you have reached this
book through a search, the
search terms will be
highlighted: the no
highlighting button turns
this off. Click on expand
text to expand out the whole
text of the current section,
or book. Click on expand
contents to expand out the
whole table of contents so
that you can see the titles of
all chapters and subsections.

In some collections, the
documents do not have this
kind of hierarchical
structure. In this case, no
table of contents isFigure 2 A book in the Demo collection

B.2 FINDING INFORMATION IN A GREENSTONE COLLECTIONS 19

displayed when you get to an individual document—just the document
text. In some cases, the document is split into pages, and you can read
sequentially or jump about from one page to another.

What the icons mean

When you are browsing around the collection, you will encounter the
items shown in Table 3.

Table 3 Icons that you will encounter when browsing

Click on a book icon to read the corresponding book

Click on a bookshelf icon to look at books on that subject

View this section of the text

Open this folder and view contents

Click on this icon to close the book

Click on this icon to close the folder

Click on the arrow to go on to the next section ...

... or back to the previous section

Open this page in a new window

Expand table of contents

Display all text

Highlight search terms

How to search for particular words

From the search page, follow these simple steps to make a query:

• Specify what items you want to search: in the Demo collection you
can search books, chapters, or section titles.

• Say whether you want to search for all or just some of the words
• Type in the words you want to search for into the query box
• Click the Begin Search button

When you make a query, the titles of up to twenty matching documents
will be shown. There is a button at the end to take you on to the next
twenty. From there you will find buttons to take you on to the third
twenty or back to the first twenty, and so on. However, for efficiency

20 USING GREENSTONE COLLECTIONS

reasons a maximum of 100 is imposed on the number of documents
returned. You can change these numbers by clicking the preferences
button at the top of the page.

Click the title of any document, or the little icon beside it, to open it. The
icon may show a book, or a folder, or a page: it will be a book icon if you
are searching books; otherwise if you are searching sections it will be a
folder or page icon depending on whether or not the section found has
subsections.

SEARCH TERMS

Whatever you type into the query box is interpreted as a list of words
called “search terms.” Each search term contains nothing but alphabetic
characters and digits. Terms are separated by white space. If any other
characters such as punctuation appear, they serve to separate terms just as
though they were spaces. And then they are ignored. You can’t search for
words that include punctuation.

For example, the query

Agro-forestry in the Pacific Islands: Systems for
Sustainability (1993)

will be treated the same as

Agro forestry in the Pacific Islands Systems for
Sustainability 1993

QUERY TYPE

There are two different kinds of query.

• Queries for all the words. These look for documents (or chapters, or
titles) that contain all the words you have specified. Books that
satisfy the query are displayed, in alphabetical order.

• Queries for some of the words. Just list some terms that are likely to
appear in the documents you are looking for. Books are displayed in
order of how closely they match the query. When determining the
degree of match,

• the more search terms a document contains, the closer it matches;
• rare terms are more important than common ones;
• short documents match better than long ones.

Use as many search terms as you like—a whole sentence, or even a whole
paragraph. If you specify only one term, it doesn’t much matter whether
you use an all or a some query, except that in the second case documents

B.2 FINDING INFORMATION IN A GREENSTONE COLLECTIONS 21

will be ordered by the search term’s frequency of occurrence.

Scope of queries

In most collections you can choose different indexes to search. For
example, there might be author or title indexes. Or there might be chapter
or paragraph indexes. Generally, the full matching document is returned
regardless of which index you search.

If documents are books, they will be opened at the appropriate place.

Advanced search features

While the above is enough to meet most searching needs, some more
advanced search features are provided. These are activated from the
preferences page, which is reached by clicking the preferences button at
the top of the page—see section B.3 below. When you change your
preferences, do not click your browser’s Back button—that would undo
the changes. Instead, click any of the buttons on the search/browse bar.

CASE SENSITIVITY AND STEMMING

When you specify search terms, you can choose whether upper and lower
case must match between the query and the document: this is called “case
sensitivity.” You can also choose whether to ignore word endings or not:
this is called “stemming.”

Under Search options on the Preferences page you will see a pair of
buttons labeled ignore case differences and upper/lower case must match ;
these control the case sensitivity of your queries. Below is a pair of
buttons labeled ignore word endings and whole word must match: these
control stemming.

For example, if the buttons ignore case differences and ignore word
endings are selected, the query

African building

will be treated the same as

africa builds

because the uppercase letter in “African” will be transformed to
lowercase, and the suffixes “n” and “ing” will be removed from “African”
and “building” respectively (also, “s” would be removed from “builds”).

22 USING GREENSTONE COLLECTIONS

Generally case differences and word endings should be ignored unless
you are querying for particular names or acronyms.

PHRASE SEARCHING

If your query includes a phrase in quotation marks (“ and ”), only
documents containing that phrase, exactly as typed, will be returned.

If you want to use phrase searching, you need to learn a little about how it
works. Phrases are processed by a post-retrieval scan. First the query is
issued in the normal way—all the words in the phrase are included as
search terms—and then the documents returned are scanned to eliminate
those in which that phrase does not appear.

During the post-retrieval scan, phrases are checked just as they are,
including any punctuation. For example, the query

what’s a "post-retrieval scan?"

will first retrieve all documents that match all of the words

what s a post retrieval scan

and then the documents returned will be checked for the phrase

post-retrieval scan?

Finally, for computational reasons, the smallest unit of granularity is
automatically enforced whenever phrase searching is used. In most
collections, this is the paragraph level.

ADVANCED QUERY MODE

In advanced query mode , which can be selected on the Preferences page,
the queries for all of the words, described above, are actually Boolean
queries. They consist of a list of terms joined by logical operators &
(and), | (or), and ! (not). Absent operators are interpreted as & (and): thus
a query without any operators returns documents that match all the terms.

If the words AND, OR, and NOT appear in your query they are treated as
ordinary search terms, not operators. For operators you must use &, |, and
!. In addition, parentheses can be used for grouping.

B.3 Changing your preferences

When you click the preferences button at the top of the page you will be

B.3 CHANGING YOUR PREFERENCES 23

able to change some features of the interface to suit your own
requirements.

Collection preferences

Some collections comprise several subcollections, which can be searched
independently or together, as one unit. If so, you can select which
subcollections to include in your searches on the Preferences page.

Presentation preferences

Depending on the particular collection, there may be several options you
can set that control the presentation. Collections of Web pages allow you
to suppress the Greenstone navigation bar at the top of each document
page, so that once you have done a search you land at the exact Web page
that matches without any Greenstone header. To do another search you
will have to use your browser’s “back” button. These collections also
allow you to suppress Greenstone’s warning message when you click a
link that takes you out of the digital library collection and on to the Web
itself. And in some Web collections you can control whether the links on
the “Search Results” page take you straight to the actual URL in question,
rather than to the digital library's copy of the page. Collections that are
capable of being presented in different languages allow you to specify the
interface language. If the language is Chinese, you can also specify which
of the standard Chinese encodings your browser uses. Finally, all
collections allow you to switch to a textual interface format rather than
the standard graphical one. This is particularly useful for visually
impaired users who use large screen fonts or speech synthesizers for
output.

Search preferences

Two pairs of buttons control the case sensitivity and stemming of the
searches that you make. The first set of buttons controls whether upper
and lower case must match (case sensitivity). The second set controls
whether to ignore word endings or not (stemming).

You can also switch to an “advanced” query mode which allows you to
combine terms using AND (&), OR (|), and NOT (!). This allows you to
specify more precise queries.

Finally, you can control the number of hits returned, and the number
presented on each screenful.

www.nzdl.org

C
Building collections

We now look at the process of building collections. This is for
librarians!—but Greenstone empowers anyone to become a digital
librarian. The next section describes the computer files that are used in a
collection, including the original source files that contain the source
material, and the file structure that is used internally. Each document can
be hierarchically structured, with sections and subsections.

Section C.2 describes how to update an existing collection by adding new
material and rebuilding it. This is easy to do: the software is designed for
ease of maintenance of digital library collections.

Then we look at the more challenging process of building a new
collection from scratch. Building simple collections is easy—to build a
collection with exactly the same structure as an existing one, with source
documents in exactly the same format, is extremely simple. The
Greenstone software is very flexible, allowing different kinds of source
document and different sorts of browsing indexes, and this flexibility
comes at a price: if you want to take advantage of it, you must learn to
control it. Section C.3 describes all the issues that are involved in building
new collections.

C.1 The files in a Greenstone collection

When you create a new collection or add material to an existing one, you
need to put the original source documents in a place from which they can
be brought into the system, a process known as “importing” the
documents into Greenstone. When they are imported, documents are
converted into a simple HTML-like format known as GML for
Greenstone Markup Language, which includes any “metadata,” or
descriptive data such as author, title, date, keywords, and so on, that is
associated with the document. Documents are assumed to be in Unicode,
expressed in the UTF-8 coding scheme (of which the ASCII characters
form a subset).

C.1 THE FILES IN THE GREENSTONE COLLECTION 25

Files and directories

The Greenstone system is placed in a directory structure rooted at
$GSDLHOME (on the New Zealand Digital Library project’s computers,
it’s rooted in /home/nzdl/gsdl). In order to use the software, you need to
set this environment variable accordingly.

There are some other initialization functions that need to be done in order
to make best use of the software; for example, augmenting your search
path so that Greenstone utility programs are found automatically. These
functions can be accomplished automatically by a setup script in
$GSDLHOME/setup.sh (or setup.csh if you are using the C-shell; for
other shells consult your local Unix expert). On Windows, the directory
structure is rooted at %GSDLHOME%, and the setup script is in the file
%GSDLHOME%\setup.bat. Table 4 gives Unix and Windows experts
more information on what is required.

We will generally omit the $GSDLHOME prefix from filenames in this
documentation.

Table 4 Contents of the file setup.sh

$GSDLHOME/setup.sh export GSDLHOME=/home/nzdl/gsdl set by auto
export GSDLOS=`uname -s | tr A-Z a-z`
export PATH=$PATH:$GSDLHOME/bin/script:$GSDLHOME/bin/$GSDLOS

%GSDLHOME%\setup.bat set GSDLHOME=c:\gsdl
set GSDLOS=windows
set PATH=%PATH%;%GSDLHOME%\bin\script;%GSDLHOME%\bin\windows;

The directory collect (i.e. $GSDLHOME/collect) contains a directory for
each collection; to see what collections there are, both public and private,
you can look here. Collection names usually bear some resemblance to
what the collection is called on the New Zealand Digital Library Web
page, although that page, of course, only shows public collections. For
each collection, there will be several subdirectories, shown in Table 5a.
The contents of these directories for the Demo collection are show in
Table 5b, for reference. The perllib directory contains PERL programs
that are specific to this collection.

26 BUILDING COLLECTIONS

Table 5 (a) Subdirectories for an individual collection ; (b) Subdirectories
for the Demo collection

(a) archives Source files from which the collection is built, usually in GML format
building Stores the collection’s indexes while the collection is being built

etc Collection-specific configuration file collect.cfg, and any necessary data
files

import Original raw material for the collection, in its original format
index Stores the indexes for the live collection, as it is served to users

perllib Contains PERL programs specific to this collection

(b) collect/demo archives:
 HASH0105.dir HASH017d.dir HASH63e6.dir HASHaad6.dir
 HASH0144.dir HASH026b.dir HASH7df3.dir HASHe52a.dir
 HASH0173.dir HASH54cf.dir HASHa0a5.dir archives.inf

building:

etc:
 collect.cfg mags.txt sub.txt org.txt

import:
 bostid ecourier faobetf index.txt wb

index:
 build.cfg dtx stt stx text

perllib:

 classify

Creating a collection

The process of creating a collection goes like this. The original raw
material is placed in the import directory, in whatever form it is
available—plain text files, Word documents, HTML files, depending on
where it came from. Then the import process is invoked. Controlled by
the configuration file in etc/collect.cfg, the files in import are converted
into GML format and placed in the archives directory. The original raw
material remains in import. Then the build process is invoked. Again
controlled by the configuration file, the requisite indexes for the
collection are built and placed in the building directory. Finally, the
contents of the building directory are moved into the index directory, and
the new version of the collection automatically becomes live.

This procedure may seem cumbersome. But all the steps are necessary for
efficient operation with large collections. First, the import process could
be performed on the fly during the building operation—but because
building indexes is a multipass operation, the often lengthy importing
would be repeated several times. Second, the build process can take

C.1 THE FILES IN THE GREENSTONE COLLECTION 27

considerable time—some days, for very large collections. It puts the
result into the separate building directory so that, if the collection already
exists, it can continue to be served to users in its old form from the
directory index throughout the building operation.

If desired, the separate step of importing can be avoided by putting the
original raw material in the archives directory. The building process uses
filename extensions to recognize the type of files being dealt with. On
finding files other than .gml files in the archives directory, it will invoke
the import procedure automatically for each pass of index creation. This
saves the extra space required to store the collection twice, in both
original and imported form, at the expense of the additional time required
to perform the import conversion for each pass of the building process.

The configuration file that controls the collection creation procedure
resides in the collection’s etc directory, along with any collection-specific
data files that are required. (For example, building a hierarchy of
classifications requires a data file of sub-classifications, which is placed
here.)

The imported documents

In order to identify documents in the Greenstone system, a unique object
identifier or “OID” is assignment to each original source document and
stored as metadata within that document. It is important that no two
documents have the same OID, and that a document’s OID persists
throughout the index-building process—so that a user’s search history is
unaffected by rebuilding the collection. OIDs are assigned by hashing the
contents of the original source document during the import process; an
example OID is “HASHa723e7e164df07c833bfc4”.

Once it has been imported, each document is stored in its own
subdirectory of the archives directory, along with any other files—for
example, image files—that are associated with the document. The name
of the subdirectory is generated from the document’s OID, and the
document is stored in GML format in a file called doc.gml.

To retain compatibility with Windows 3.X systems, only eight characters
are used in directory and file names. The much longer OIDs are mapped
into multiple directory names, but the directory structure is kept as
shallow as possible by using only as much of the OID as required. For
example, just the first eight characters of the documents OID are used,
except that if a directory with this name already exists, a subdirectory of it
is created using the next eight, and so on (in fact, this seldom happens).

28 BUILDING COLLECTIONS

Inside the documents

Within a single document, the GML format imposes a limited amount of
structure. (We will give examples shortly, in Table 8.) Documents are
divided into paragraphs. They can be split hierarchically into sections and
subsections; these may be nested to any depth. OIDs are extended to
identify sections and subsections by appending section and subsection
numbers, separated by periods, to a document’s OID. For example,
subsection 3 of section 2 of document HASHa7 is referred to as
HASHa7.2.3. When you read a book in a Greenstone collection, the
section hierarchy is manifested in the table of contents of the book. For
example, books in the Demo collection have a hierarchical table of
contents showing chapters, sections, and subsections. Documents in the
Computer Science Technical Reports do not have a hierarchical
subsection structure, but each document is split into pages and you can
browse around the pages of a retrieved document. Chapters, sections,
subsections, and pages are all implemented simply as “sections” within
the document.

The document structure is also used for searchable indexes. There are
three levels of index: documents, sections, and paragraphs. A document
index contains the full document. When a section index is created, each
section stretches from a gsdlsection tag to the next-occurring gsdlsection
tag—thus a chapter that immediately begins with a new section will
produce an empty document in the index. Sections and subsections are
treated alike: the hierarchical document structure is flattened for the
purposes of creating searchable indexes. As well as indexes of text,
indexes of any kind of metadata can also be created. For example, most
collections offer searchable indexes of section titles.

It has already been mentioned that metadata is stored with documents.
The Dublin Core metadata standard is used, which defines the metadata
types in Table 6 (starred ones are used in current collections). However,
metadata types that are not in the Dublin Core may be used too (for
example, the Demo collection contains “how to” and “Magazine”
metadata).

C.1 THE FILES IN THE GREENSTONE COLLECTION 29

Table 6 The Dublin Core metadata standard. Starred items are used in current collections

 Name Metadata
subtag

Definition

*Title Title A name given to the resource
*Creator Creator An entity primarily responsible for making the content

of the resource
*Subject and keywords Subject The topic of the content of the resource
*Description Description An account of the content of the resource
*Publisher Publisher An entity responsible for making the resource available
 Contributor Contributor An entity responsible for making contributions to the

content of the resource
*Date Date A date associated with an event in the life cycle of the

resource
 Resource type Type The nature or genre of the content of the resource
 Format Format The physical or digital manifestation of the resource
*Resource identifier Identifier An unambiguous reference to the resource within a

given context: this is the object identifier or OID
*Source Source A Reference to a resource from which the present

resource is derived
*Language Language A language of the intellectual content of the resource
 Relation Relation A reference to a related resource
 Coverage Coverage The extent or scope of the content of the resource
 Rights management Rights Information about rights held in and over the resource

The GML format

All text documents are converted to GML when they are imported into
the Greenstone system. The HTML convention of tags enclosed in angle
brackets is adopted for markup; any <, >, or “ characters within the text
are stored as their HTML equivalent (< > and ").

A <gsdlsection> tag denotes the start of each document section, and the
corresponding </gsdlsection> closing tag marks the end of that section.
Each <gsdlsection> tag can contain any number of subtags shown in
Table 7. Metadata is indicated within the gsdlsection tag (for example,
<gsdlsection Title=“Food and Nutrition Bulletin”>); thus different
metadata can be associated with individual sections of a document. Any
subtags other than those in are considered to be metadata that is attached
to that section.

30 BUILDING COLLECTIONS

Table 7 Subtags of <gsdlsection>
gsdlsourcefilename Original file from which the GML was generated

gsdldoctype Type of document (currently the only recognized type is indexed_doc)
gsdlassocfile File associated with the document (e.g. an image file)

gsdlnum Subsection number (this does not exist at the document’s top level)

Table 8a is a GML file that contains a simple document comprising a
single section with title, and three associated images. Table 8b shows a
more complex document: a book with two sections called Preface and
Conclusions, the second of which has two subsections. Note that a chapter
is simply treated as a top-level section. In some collections documents are
split into individual pages. These are treated as sections, though they
don’t usually have titles. Table 8c shows a book with two sections
(corresponding to chapters), the first of which has two pages and the
second one page.

Table 8 Three examples of documents in GML format

(a) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands"
 gsdlassocfile="cover.jpg:image/jpeg"
 gsdlassocfile="p21.jpg:image/jpeg"
 gsdlassocfile="p22.jpg:image/jpeg">

 This is the text of the document
</gsdlsection>

(b) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands">
 <gsdlsection gsdlnum="1" Title="Preface">

 This is the text of the preface
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Conclusions">
 <gsdlsection gsdlnum="1" Title="Part 1">

 This is the first part of the conclusions
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Part 2">

 This is the second part of the conclusions
 </gsdlsection>
</gsdlsection>

C.2 UPDATING EXISTING COLLECTIONS 31

 (c) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands">
 <gsdlsection gsdlnum="1" Title="Chapter 1">
 <gsdlsection gsdlnum="1">

 This is the text of the first page of chapter 1
 </gsdlsection>
 <gsdlsection gsdlnum="2">

 This is the text of the second page of chapter 1
 </gsdlsection>
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Chapter 2">
 <gsdlsection gsdlnum="1">

 This is the text of the first and only page of chapter 2
 </gsdlsection>
 </gsdlsection>
</gsdlsection>

C.2 Updating existing collections

Updating an existing collection is easy. Since the collection already
exists, its directory (a subdirectory of collect) will exist, with
subdirectories import, archives, building, index, and etc. The etc directory
will already contain a collection configuration file collect.cfg.

The collection is to be updated with new files. For example, in the Demo
collection the raw material consists of marked up HTML files containing
<<TOC>> tags to split books into sections and subsections, and <<I>>
tags to indicate where an image is to be inserted. For each book in the
library there is a directory that contains a single HTML file representing
the book, and separate files containing the associated images. We assume
that the new material is in exactly the same format as the existing files
that have previously been used to create the collection.

What you have to do

You need to import the new material into the Greenstone system, and then
rebuild the collection. The procedure is as follows. Put the new material
into the import directory, and then import it by executing import.pl:

import.pl [options] collection-name

The program import.pl processes the files and directories in the import
directory and converts the documents to GML format, placing the result
in the archives directory. Any other files (e.g. image files) that are
associated with a document are also copied to archives.

32 BUILDING COLLECTIONS

The options for import.pl are given in the table below. You can override
the default directory names import and archives, and specify that just a
few documents are to be converted—which is useful for testing purposes
when dealing with large collections. To add new material to a collection
without re-importing the old, put the new material into another directory
and specify it using the — importdir option.

The purpose of the import step is to put all documents into a standard
format before building the collection. Otherwise each document would
have to be converted several times, because building is a multi-pass
operation. However, it is possible to simply omit this step. In this case the
original source material is put straight into the archives directory, and the
program import.pl is not executed at all. The building step processes all
files in the archives directory. Noticing from the filename extensions that
they need to be converted first, the building process silently invokes this
step for each pass.

Once the new material has been imported, the collection should be
rebuilt:

buildcol.pl [options] collection-name

The final step is to remove the old contents of the index directory, if any
exist, and move the contents of the building directory into the index
directory, from which the collection is served to users. On Unix systems,

rm –r index/*
mv building/* index

The building directory is merely used as a holding-place during the
potentially lengthy building process. It is quite possible that there are
active users of the collection at the time that building is moved into index.
Since documents are referred to internally by their OID, which persists
through the rebuilding process, users who are examining the results of a
query or browse operation will still access the expected documents. If a
query is actually in progress at the time the contents of index are changed,
it may encounter an internal MG error which will cause it to be
transparently re-executed, this time on the new version of the collection.

Some useful debugging features are incorporated into import.pl and
buildcol.pl. You can perform a build operation but print (to stdout) the
information that is generated instead of passing it to MG or txt2gdbm.
Suppose, for example, you are writing a plugin to handle a particular
collection, and the Greenstone interface shows that the text is coming out
wrong. Running buildcol.pl with the debug switch and the appropriate
mode option will show exactly what the plugin is sending to MG

C.2 UPDATING EXISTING COLLECTIONS 33

In summary, once you have put the raw material into the import directory
these four commands are all you need to rebuild a collection:

import.pl collection-name
buildcol.pl collection-name
rm –r index/*
mv building/* index

Table 9 Options for import.pl, buildcol.pl and mkcol.pl

Option Meaning

import.pl –verbosity <number> 0=none, 3=too much
–importdir
<directory>

Where the original material comes from (default
import)

–archivedir
<directory>

Where the converted material goes to (default
archives)

–cachedir
<directory>

Not yet implemented

–maxdocs <number> Maximum number of documents to convert
–removeold Delete everything in the archives directory first
–gzip Compress the resulting GML files using gzip
–debug Print out the GML documents instead of saving

them to GML files

buildcol.pl –verbosity <number> 0=none, 3=too much
–archivedir
<directory>

Where the building material comes from (default
archives)

–builddir
<directory>

Where the indexes that are built go to (default
building)

–cachedir
<directory>

Cache the archives to this directory (used to
specify a local disk when archives are on a
remote disk))

–maxdocs <number> Maximum number of documents to include
–allclassifications Normally, information for empty classifications

created by a classifier is suppressed. If this flag is
set, it is included (this may create empty folders).

–debug Print the output that would normally be piped to
MG (when compressing text or building an
index) or text2db (when writing the GDBM file)

–mode all
–mode
compress_text
-mode build_index

-mode infodb

Just compress the text, or just build the index(es),
or just write the GDBM database (all, the default,
is a full build)—for use in conjunction with
–debug

–keepold Do not delete the current contents of the building
directory before starting (defaults to false)—for
use in conjunction with –mode to continue after a
failure of the build process

34 BUILDING COLLECTIONS

–index If not set, all indexes in collect.cfg are built; this
switch allows selective indexing for debugging
(e.g. –index document:Title)

mkcol.pl –maintainer Email address of the collection’s maintainer
–public Whether collection is to be made public or not
–beta Whether collection is beta version or not
–index List of indexes to include
–defaultindex The default index
–title Title of the collection
–about “About this collection” text

Example

Consider as an example the Demo collection. There are two ways to build
the collection. The first is to install the raw material in the directory
collect/demo/import, run import.pl to convert to GML and copy to the
archives directory, then run buildcol.pl on the resulting archives. The
second is to install the raw material in the directory collect/demo/archives
and run buildcol.pl directly on this raw material.

The first method is much faster than the second, because the conversion
process is done once only, instead of at each pass of the build operation
(there are two passes to compress the text, two for each index, and a
further pass to construct the GDBM file). However, the second method
uses less disk space, because no GML files are stored, and retains the
original directory structure.

Once the collection has been built, it will be discovered automatically by
the receptionist, which polls the collect directory regularly to update its
list of collections.

How it works

The original material in the import directory may be in any format, and a
“plugin” is required to process each format type (described below). The
plugins that a collection uses must be specified in the collection
configuration file. The import program reads the list of plugins and passes
each document to each plugin in order until it finds one that can process
it. Since we are working with an existing collection, we have assumed
that all plugins necessary to process new material have already been
specified in the configuration file.

The buildcol.pl step actually creates the indexes for both searching and

C.3 CREATING NEW COLLECTIONS 35

browsing. The MG software is generally used to do the searching. The
buildcol.pl process invokes the MG module mgbuild to create each of the
indexes that is required. For example, the Humanities Development
Library has three indexes, one for entire books, one for chapters, and one
for section titles. (Subdirectories of the index directory are created for
each of these indexes.)

MG also compresses the text of the collection (the compressed version is
placed in a subdirectory index/text). In addition, the image files are linked
into the index/assoc subdirectory. Now none of the material in the import
and archives directories is needed to run the collection (though they
would be needed to rebuild it).

Associated with each collection is a database stored in GDBM (Gnu
database manager) format. This contains an entry for every section of
every document giving its OID, its internal document number used by
MG (which, unlike the OID, may change from one build to the next), and
metadata such as its title. Information for each of the browsing indexes,
which appear as buttons on the Greenstone search/browse bar, is also
extracted during the building process and stored in the GDBM database.
A “classifier” program (see below) is required for each browsing index to
extract the appropriate information from GML documents. Like plugins,
classifiers are written on an ad hoc basis for the particular information
required, and where possible are reused from one collection to another.

The program buildcol.pl builds the indexes based on whatever appears in
the archives directory. The first plugin specified by all collections is one
that processes GML files (called GMLPlug), and so if archives contains
files created by import.pl they will be processed correctly. If the archives
directory contains material in the original format, it will be converted
using the appropriate plugin for that format. This is why the import
process is an optional one (although usually desirable because it speeds
up the operation substantially).

C.3 Creating new collections

The first step in creating a new collection is to run the program mkcol.pl.

mkcol.pl [options] collection-name

This sets up the directory structure and generates a skeleton collection
configuration file. The options are shown below. Only the creator is
required, all others have defaults. For example, you might type

mkcol.pl –creator … collection-name

36 BUILDING COLLECTIONS

The original source material should be placed in the import directory. The
next step is to run import.pl to import the documents into the archives
directory, and then buildcol.pl to create the indexes and compressed text
in the building directory as described above. Both these operations are
controlled by the collection’s configuration file, etc/collect.cfg. You will
need to edit this file to specify appropriate plugins to decipher the
imported file format and convert it to the GML language; without these,
the collection that is built may be empty because files for which there is
no appropriate plugin are simply ignored (and a warning message is
printed to the error channel). You will need to edit the configuration file
to specify which full-text search indexes are to be built: the default is a
single index for the entire text of the collection. You will need to specify
appropriate classifiers to create the information necessary for browsing
interfaces. In the absence of these specifications, the configuration file
created by mkcol.pl will make a bland collection with just one searchable
index and no browsing indexes—and it may be empty because no
documents can be imported.

Thus the entire sequence needed to create a new collection is

mkcol.pl –creator … collection-name

place the source material in the import directory
edit the configuration file etc/collect.cfg appropriately

import.pl collection-name
buildcol.pl collection-name
mv building/* index

The collection configuration file

All you have to do now is to come up with an appropriate configuration
file and re-run the import and build processes. Look at the one you have
in etc/collect.cfg: you will find that it looks something like Table 10a.
Lines are numbered for reference: they can appear in any order, each line
being an independent command chosen from the list in Table 10c
followed by a number of fields separated by white space.

Table 10 (a) Plain collection configuration file, as created by mkcol.pl; (b) Collection
configuration file for the Demo collection; (c) Summary of configuration file commands

(a) creator sjboddie@cs.waikato.ac.nz a1
maintainer sjboddie@cs.waikato.ac.nz a2
public true a3
beta true a4

indexes document:text a5
defaultindex document:text a6

plugins GMLPlug a7

C.3 CREATING NEW COLLECTIONS 37

plugins TEXTPlug a8
plugins ArcPlug a9
plugins RecPlug a10

classify AZList metadata=Title a11

collectionmeta collectionname "my_new_collection" a12
collectionmeta .document:text "documents" a13

(b) creator sjboddie@cs.waikato.ac.nz b1
maintainer sjboddie@cs.waikato.ac.nz b2
public true b3
beta true b4

indexes section:text section:Title document:text b5
defaultindex section:text b6

plugin GMLPlug b7
plugin HBPlug b8
plugin ArcPlug b9
plugin IndexPlug b10
plugin RecPlug b11

classify Hierarchy hfile=sub.txt metadata=Subject sort=Title b12
classify HDLList Title b13
classify Hierarchy hfile=org.txt metadata=Organization sort=Title b14
classify List metadata=Howto b15

format SearchVlist "<td valign=top>[link][icon][/link]</td>
<td>{If}{[parent(All': '):Title],[parent(All': '):Title]: }
[link][Title][/link]</td>"

b16

format CL4Vlist "
[link][Howto][/link]" b17
format DocumentImages true b18
format DocumentText "<h3>[Title]</h3>\\n\\n<p>[Text]" b19

collectionmeta collectionname "greenstone demo" b20
collectionmeta collectionextra "This is a demonstration collection for the

Greenstone digital library software.\nIt contains a small
subset (11 books) of the Humanity Development Library"

b21

collectionmeta iconcollection
"http://www.nzdl.org/gsdl/collect/demo/images/demo.gif"

b22

collectionmeta .section:Title "section titles" b23
collectionmeta .document:text "entire books" b24
collectionmeta .section:text "chapters" b25

(c) creator Email address of the collection’s creator
maintainer Email address of the collection’s maintainer
public Whether collection is to be made public or not
beta Whether collection is beta version or not
indexes List of indexes to build
defaultindex The default index

38 BUILDING COLLECTIONS

subcollection Define a subcollection based on metadata
indexsubcollections Specify which subcollections to index
defaultsubcollection The default indexsubcollection
languages List of languages to build indexes in
defaultlanguage Default index language
collectionmeta Defines collection-level metadata
plugin Specifies a plugin to use at build time
format A format string (explained below)
classify Specifies a classifier to use at build time

The collection configuration file for the Demo collection is shown in
Table 10b. For each collection, the bland configuration file that mkcol has
produced automatically must be edited into something that looks like this.
The most formidable part, the format and collectionmeta statements, are
cosmetic: the basic collection structure is created by the indexes
statement, which determines what searchable indexes there are, the five
plugin statements, which determine how the raw input files are read and
parsed, and the four classify statements, each of which produces one of
the four browsing access buttons.

The first block, lines a1–a4 and b1–b4, specifies the creator and
maintainer of the collection, whether it is supposed to be made publicly
available or not, and whether it is a beta version or not.

The next line specifies the full-text searching indexes that are to be built.
Line a5 specifies that there is to be just one index. Indexes can be
constructed at the document, section, and paragraph levels. They can
contain material from text or any metadata—most commonly Title. These
two elements are separated by a colon in the indexes line. Line b5 calls
for three indexes to be created: the first for sections, the second for
section titles, and the third for complete documents. In addition, text and
multiple metadata types can be included in a single index using commas
as separators, e.g. section:text,Title,Creator.

Collection-level metadata such as the long form of the collection’s name,
its icon, the names of indexes, and the “about” text can be defined using
collectionmeta entries in the configuration file. Lines a12–a13 specify
very rudimentary metadata; this has been expanded to lines b20–b25 by
adding entries that are largely self-explanatory.

The plugins (lines b7–b11), classifiers (lines b12–b15), and format strings
(lines b16–b19) are described in separate sections below. Plugins and
classifiers make use of several auxiliary files that will be described in due
course: they are collected together in Table 11 for easy reference. Briefly,
the index.txt file is used by the IndexPlug plugin to assign metadata to the

C.3 CREATING NEW COLLECTIONS 39

documents; mags.txt is a file that is special to this collection that
determines which of the books in it are actually magazines, for special
treatment in the titles browsing list; sub.txt specifies the subject hierarchy
that appears when you press the subject browsing button; and org.txt
defines the organization hierarchy that appears when you press the
organization browsing button. These are subsets of the corresponding
files for the Humanities Development Library, which accounts for the fact
that the numberings do not start from 1. You can see index.txt in the
import directory in Table 5b; the other three files reside in the etc
directory. (For maximum software reuse, the same format used for
configuration files is used for the files that are read in by plugins and
classifiers.)

Finally we will describe the subcollection and language-specific index
facilities; these are not used in the Demo collection.

Table 11 Auxiliary files used in building the Demo collection
(a) index.txt

(used by IndexPlug)
key: Subject Organization Howto Magazine
bostid/b22bue 16.11 bostid "start a butterfly farm"
faobetf/fb33fe 14.12 faobfs <Subject>16.11
faobetf/fb34fe 14.12 faobfs "farm snails"
<Subject>16.11
bostid/b18ase 16.11 bostid "introduce little-known
Asian …"
bostid/b20cre 16.11 bostid
bostid/b17mie 16.11 bostid "introduce small animals
and …"
bostid/b21wae 16.5 bostid "utilize the …"
<Subject>16.11
ecourier/ec158e 23.15 ecc <Subject>8.1 "<Magazine>The
Courier"
ecourier/ec159e 23.15 ecc <Subject>6.1 "<Magazine>The
Courier"
ecourier/ec160e 23.15 ecc <Subject>21.1 "<Magazine>The
Courier"
wb/wb34te 6.4 wb "achieve gender equality"

(b) mags.txt
(used by HDLList)

"The Courier" 3 "The Courier"

40 BUILDING COLLECTIONS

(c) sub.txt
(used by Hierarchy)

6 6 "Society, Culture, Community, Woman, Youth,
…"
6.1 6.1 "Social sciences, sociology (works
comprising …"
6.4 6.4 "Women, gender and development, women's …"
8 8 "Communication, Information and
Documentation"
8.1 8.1 "Communication, telecommunication, mass …"
14 14 "Agriculture and Food Processing"
14.12 14.12 "Better Farming series of FAO and INADES"
16 16 "Animal Husbandry and Animal Product
Processing"
16.5 16.5 "Cattle"
16.11 16.11 "Other animals (micro-livestock, little
known …)"
21 21 "Settlements, Housing, Building - …"
21.1 21.1 "Settlements and housing: general works
incl. …"
23 23 "Development Periodicals and Magazines"
23.15 23.15 "The Courier ACP 1990 - 1996 Africa-
Caribbean-…"

(d) org.txt
(used by Hierarchy)

bostid 4 BOSTID
1echo 10 E.C.H.O
ecc 11 "EC Courier"
faobfs 15 "FAO Better Farming series"

Plugins

Plugins are used by the collection-building software to accomplish all the
format-specific parsing of each document. The configuration file gives a
list of all the plugins to be used in building that collection. For example,
the Demo collection (lines b7–b11) specifies five plugins: GMLPlug,
HBPlug, ArcPlug, IndexPlug and RecPlug. During the import operation,
each file or directory is passed to each plugin in turn until one is found
that can process it—thus earlier plugins take priority over later ones. If no
plugin is found that can process the file, a warning is printed (to the error
channel) and processing passes to the next file. The same procedure is
used during building, this time with the archives directory.

Recursion is necessary to traverse directory hierarchies. Although the
importing (and building) programs do not perform recursion explicitly,
some plugins cause indirect recursion. A plugin may itself pass files or
directory names into the plugin pipeline, allowing a directory hierarchy to
be traversed. The standard way of doing this is with RecPlug, which
recurses through a directory structure. If this is present it should be the
last element in the pipeline.

General plugins are kept in perllib/plugins, while collection-specific ones

C.3 CREATING NEW COLLECTIONS 41

are in collect/collection-name/perllib/plugins. In case of a name conflict,
collection-specific plugins override general ones. The plugins that are
currently available are listed in Table 12. Only the first three are
recursive.

Table 12 Currently-implemented plugins

Plugin Purpose

General ArcPlug Processes files named in index file archives.inf
RecPlug Recurses through a directory structure
IndexPlug Assigns metadata from index.txt file
GMLPlug Processes GML files generated by import.pl
TEXTPlug Processes plain text.
HTMLPlug Processes HTML, taking care to replace hyperlinks
EMAILPlug Processes email messages, recognizing author, subject,

date, etc.
HBPlug Processes HTML marked up for UN collections
FOXPlug Processes Foxbase dbt files

Specific PrePlug Processes HTML output by PRESCRIPT, splitting
documents into pages

GBPlug Processes Project Gutenberg etext
TCCPlug Processes email documents from Computists’

Communique

We implied earlier that communication between the import and building
processes is achieved simply by the former placing files in the archives
directory, and the latter picking them up. In fact, to make the operation
more efficient, and to allow the files to be sorted in different ways before
building commences, import writes a file called archives.inf into the top-
level directory of the archives file structure containing the names of the
GML files it has imported. (If archives.inf already exists, import simply
adds to it.) This also allows non-GML files (such as image files) to be
ignored, rather than being processed by the plugin pipeline and causing an
error message. The function of ArcPlug is to check whether it is being
passed an archives.inf, and, if so, to read the list of files it contains and
pass each one in turn into the plugin pipeline. ArcPlug should always be
included unless import.pl will never be used.

As mentioned above, RecPlug checks to see if the filename it receives is a
directory. If so, each file in that directory is passed into the plugin
pipeline. If any of these is itself a directory, it will be picked up by
RecPlug in the next pass. RecPlug is used merely to traverse the directory
structure when importing or building directly from original material.

IndexPlug is used to assign metadata to documents from a separate

42 BUILDING COLLECTIONS

metadata file called index.txt, which is generally created manually. This
plugin checks the filename it receives to see if it is index.txt, and if so,
reads the list of files, assigns metadata to them as specified, and passes
each one in turn into the plugin pipeline. The index.txt file associated with
the Humanities Development Library (from which the Demo collection is
excerpted) contains extra metadata to be associated with each book
(Subject classification, Organization, “how to” classification, and
Magazine title), and was generated manually from Excel files supplied
with the collection. Creating this file was the most time-consuming part
of making the collection.

The content of this metadata file is shown in Table 11a. The first line is a
key to what metadata fields are included, in this case Subject,
Organization, Howto, and Magazine metadata. Subsequent lines give the
filename of a document followed by its metadata values. For example, the
second line of Table 11a assigns to the document that originated in file
bostid/b22bue the Subject 16.11, the Organization bostid, the “how to”
start a butterfly farm, and nothing for Magazine. A mechanism is
provided to allow for multiple field values and missing fields. The next
line not only assigns 14.12 to Subject and faobfs to Organization by
placing field names in angle brackets, but also assigns 16.11 to Subject as
well; it makes no assignment to “how to”. All metadata specifications
may be repeated in a document file. While this may seem clunky, it
combines a mechanism to utilize metadata provided in spreadsheet files
with a way of allowing more flexible non-column-oriented specifications.

IndexPlug resembles ArcPlug in that only those files that appear in the list
will be included. It cannot be used to add metadata to just a few files, for
the other files will not be included in the collection. If importing and
building take place in separate stages, IndexPlug will operate during the
importing stage, and the files it produces will be picked up by ArcPlug
during building.

GMLPlug processes documents in GML format. It should always be
included unless import.pl will never be used.

TEXTPlug is a plugin for processing plain text. It does not alter the input
but places it between <pre> and </pre> tags for display as preformatted
text in an HTML page. It is being extended to allow the input to be GB-
encoded, to allow Chinese files to be read.

HTMLPlug processes plain HTML. It replaces hyperlinks: if the target is
a document within the collection it makes the appropriate linkage; if not it
calls a CGI script that warns the user that they are leaving the collection.
(Also being extended with GB-encoding).

C.3 CREATING NEW COLLECTIONS 43

EMAILPlug processes email messages in the standard format. It extracts
metadata such as to, from, subject, and date. It preserves embedded
hyperlinks, and turns email addresses into hyperlinks.

HBPlug processes marked-up HTML files supplied for United Nations
collections. HBPlug is specially written for these collections. It reads the
input file, splits it into sections at <<TOC>> tags and replaces <<I>> tags
with corresponding HTML tags.

FOXPlug processes a Foxbase DBT file. It provides the basic
functionality to read DBT and DBF files and process each record. It
should be overridden for a particular database to process the appropriate
fields in the file.

The suite of collection-specific plugins is growing rapidly. PrePlug, used
by the Computer Science Technical Reports collection, processes the
simplified HTML output by PRESCRIPT. It splits documents into pages
on <!–End Of Page–> or <!–Page No–> tags if present, otherwise at
paragraph breaks every 50 lines or so. It also checks whether the
document has a corresponding .info file, from which it obtains metadata.
GBPlug, used by the Gutenberg collection, separates out introductory
boilerplate and splits documents into pages of 80 or so lines. It also
extracts title and author metadata from the text. TCCPlug processes the
email documents received from the Computists’ Communique. It splits
documents into separate articles and extracts title and date metadata.

Classifiers

Classifiers are used to create a collection’s browsing indexes, for
example, the Demo collection’s Subject, and Titles A-Z, organization,
and “how to” indexes. This information is stored in the GDBM database,
and the classifiers are called during the final phase of buildcol.pl when
this database is being built.

Like plugins, classifiers are specified in a collection’s configuration file,
one line for each. This line contains the keyword “classify” followed by
the name of the classifier and any options it takes. For example, line a11
of Table 10a makes an alphabetic list of the contents of the Title metadata
field: it takes all documents with this metadata, sorts them by title, and
splits them into alphabetical subsections.

A similar command appears as line b13 of Table 10b, and you can see the
result by clicking the Titles A-Z button of the Demo collection. The
HDLList that it specifies is a classifier written especially for the Humanity
Development Library, from which the Demo collection was derived. It is

44 BUILDING COLLECTIONS

identical to the standard AZList classifier described below, except that it
adds a hierarchy classification for the “Magazines” section, and obtains
this information by reading the file mags.txt shown in Table 11b. In this
case only one document (The Courier) is declared as a magazine; in the
full Humanity Development Library there are several such documents.
This classifier has no options: since it is only used by this collection, the
functionality is hard-coded.

The other classify lines in the demonstration collection configuration file
specify a hierarchical browsing index for the Subject metadata (line b12),
a hierarchical browsing index for the Organization metadata (b14), and a
plain list for the “how to” metadata (b15).

Table 13 Currently-implemented classifiers

Classifier Argument Meaning
Hierarchy Hierarchical classification

hfile A classification file
 metadata Metadata element to test against hfile identifier

sort Metadata element to sort documents by (optional)
 buttonname Name of the button used to access this classifier (defaults to

value of metadata argument)
List A list of documents

metadata Include documents containing this metadata element
 buttonname Name of the button used to access this classifier (defaults to

value of metadata argument)
SectionList A list of sections in documents
AZList A list of documents split into alphabetical ranges

metadata Include all documents containing this metadata element
 buttonname Name of the button used to access this classifier (defaults to

value of metadata argument)
AZSectionList Like AZList but includes every section of the document
DateList Like AZList but sorted by date

Classifiers generate a hierarchical structure that is used to display a
browsing index. The leaves of the hierarchy are usually documents, but in
some classifiers the leaves are sections. The internal nodes of the
hierarchy are either Vlists, Hlists, or Datelists. Vlists are lists of items
displayed vertically down the page, like the “how to” index in the Demo
collection. Hlists are displayed horizontally. For example, the Titles A-Z
display is a two-level hierarchy of internal nodes consisting of an Hlist
(giving the A-Z selector) whose children are Vlists—and their children, in
turn, are documents. A Datelist is a special kind of Vlist that allows
selection by month, This is used, for example, in the Dates classification
of the Computists’ Weekly collection.

C.3 CREATING NEW COLLECTIONS 45

Classifiers have a metadata argument that determines what documents are
included in the hierarchy. Only documents with for which this type of
data is specified are included. Table 13 lists the classifiers that are
available, and their arguments.

All classifiers generate a hierarchy. Some have an arbitrary number of
levels that depend on the application data while others have a fixed
number of levels. The former are called Hierarchy classifiers. For
example, the Demo collection’s subject and organization browsers use a
multi-level structure of Vlists nested within Vlists that reflects the
particular hierarchy desired; this is controlled by the hfile argument (see
below). The leaves are documents. There is a further optional argument,
sort, which determines how the documents at the leaves are ordered. Any
metadata can be specified as the sort key. If none is specified, the list will
be produced in build order. Ordering at internal nodes is determined by
the order in which things are specified in the hfile argument.

The second classifier type, List, generates a one-level hierarchy consisting
of a single Vlist whose children are documents— like the “how to” index
in the Demo collection. If the metadata argument is specified, only
documents containing this metadata element are included, and the list is
sorted by this metadata. If it is omitted, all documents are included, in
build order.

There are, in addition, various varieties of List classifiers as shown in
Table 13.

• SectionList—like List but the leaves are sections rather than
documents. All sections of the documents are included, except the
top level. This is used to create lists of sections (articles, chapters or
whatever) as in the Computists’ Communique collection, where each
issue is a single document and comprises several independent news
items, each in its own section.

• AZList—generates a two-level hierarchy consisting of an Hlist
whose children are Vlists, and their children are documents; the
Hlist is an A-Z selection list that divides the documents into
alphabetic ranges by the metadata type that is specified as an
argument. Documents are sorted alphabetically by metadata and the
resulting list split into alphabetical ranges.

• AZSectionList—like AZList but the leaves are sections rather than
documents.

• DateList—like AZList, except that the top-level Hlist allows
selection by year and its children are DateLists rather than Vlists (for
this classifier the metadata argument defaults to Date).

46 BUILDING COLLECTIONS

A final argument for all classifiers is Buttonname. The root of the
hierarchy corresponds to the button that gives access to the classifier on
the Greenstone navigation bar. The name of this button can be set by
Buttonname; it defaults to the metadata argument. Buttons are provided
for each Dublin Core metadata type, and for some other types of
metadata. (Soon they will be generated on demand by Gimp, a scriptable
image-manipulation program.)

Each classifier is given an implicit name generated from its position in the
configuration file. For example, the third classifier specified is called
CL3. This is used to name the GDBM fields that contains data that
defines the classifier hierarchy.

In addition, the query results list that is returned by a search is also
structured as a one-level hierarchy, comprising a single Vlist.

Finally, before we leave the topic of Classifiers we describe the format of
the file specified by hfile in Hierarchy classifiers, which gives a textual
description of the hierarchy. In the case of the Demo collection, line b12
of Table 10b specifies the file sub.txt, which is shown in Table 11c (and
was generated from an Excel file supplied with the Humanities
Development Library collection). There is one line for each section,
comprising three fields:

• identifier, which matches the specified metadata value for each
section to be included;

• position-in-hierarchy identifier, in multi-part numeric form—e.g. 1,
1.2, 2.6.1;

• title of section.

This example is a slightly confusing one because the number representing
the hierarchy appears twice on each line. The metadata type “Hierarchy”
stores its values in hierarchical numeric form, which accounts for the first
occurrence. It is the second occurrence that is used to determine the
hierarchy that the browser implements.

A second example is the organization hierarchy of the Demo collection,
shown in Table 11d as file org.txt—which is smaller and simpler than
sub.txt because this metadata has a simpler structure than the subject
hierarchy. Here the metadata type Organization contains acronyms such
as accu. The hierarchy has just one level, so the position-in-hierarchy
identifier is just an integer. The title does not need to be quoted if it does
not contain spaces.

C.3 CREATING NEW COLLECTIONS 47

Format strings

Format strings govern how the items produced by the classifiers are to be
displayed on the screen. They are introduced by the keyword format,
followed by an item to which this specification is to apply, followed by an
actual format specification itself. There are two ways of declaring which
items a format string is to apply to. The first specify how particular kinds
of items will appear—such as the document text, and other aspects of the
interface. The second way determines how the Hlists, Vlists, and
DateLists that appear in classifier hierarchies are to be displayed.

Table 14 shows the possible options for the first kind of format string.
The DocumentButtons option controls what buttons are to be displayed on
a document page. Here, string is a list of buttons to be displayed
(separated by |), possible values being Detach, Highlight, Expand Text,
and Expand Contents. Reordering the list reorders the buttons.

Table 14 The format options
format DocumentIcon

string/true/false
If true, put cover image at top left of document page; if a
format string, this is the heading to go at the top left

format DocumentContents
true/false

Display table of contents (if document is hierarchical), or
next/previous section arrows and “page k of n” text (if
not).

format DocumentButtons
string

Controls the buttons that are displayed on a document page
(default Detach|Highlight|Expand Text|Expand Contents)

format DocumentText
formatstring

Format of the text to be displayed on a document page
(default [Text], see below)

format DocumentArrowsBottom
true/false

Display next/previous section arrows at bottom of
document page (default true).

The second kind of format string gives a flexible way of controlling how
different classifiers are displayed. A single specification can apply to all
nodes of a given type in any classifier, or to all nodes in a particular
classifier, or to a particular kind of node in a particular classifier.

Format specifications are introduced by the word format followed by a
two-part keyword. Both parts are optional. The first part, if present,
identifies the classifier by its positional code, CL1, CL2, CL3, … for the
first, second, third, … classifier specified in the collection configuration
file. As noted earlier, the query results list that is returned by a search is
also structured as a one-level hierarchy, comprising a single Vlist; this can
be specified by using the word Search as the first part of a format
keyword. The second part, if present, identifies whether the format
specification is to apply to Hlists, Vlists, or DateLists. For example:

48 BUILDING COLLECTIONS

format CL4Vlist ... applies to all Vlists in CL4
format CL2Hlist ... applies to all Hlists in CL2
format CL1DateList ... applies to all DateLists in CL1
format SearchVlist ... applies to the Search Results list
format CL3 ... applies to all nodes in CL3, unless

otherwise specified
format Vlist ... applies to all Vlists in all classifiers,

unless otherwise specified

The “...” in the above format strings are HTML format specifications that
control the information, and its layout, that appear on the Web pages that
display the classifier. As well as HTML specifications, any metadata may
appear within square brackets: its value is interpolated in the appropriate
place. Lastly, any of the items shown in Table 15 may appear in format
strings. The syntax for the strings also includes a conditional statement,
which is illustrated in an example below.

Table 15 Items that may appear in format strings
[Text] The document’s text
[link]
 … [/link]

The HTML to link to the document itself

[icon] An appropriate icon (usually the little text icon when in
results string)

[num] The document result number (useful for debugging).

Recall that all classifiers produce hierarchies. Each level of the hierarchy
is displayed in one of five possible ways: as a Hlists, Vlists, or DateLists;
as a PagedList; or as Invisible. The very top levels of hierarchies are
always displayed as Invisible, because the name of the classifier is already
shown separately on the Greenstone navigation bar using the button
specified by Buttonname.

Examples of classifiers and format strings

Consider first the Demo collection’s “how to” classification. This is the
fourth classifier specified in the collection configuration file (line b15 in
Table 10b), and is therefore referred to as CL4. The classifier
specification and corresponding format statement (line b17 in Table 10b)
are reproduced below. The “how to” information is generated from the
List classifier, and its structure is a simple list of titles.

classify List metadata-Howto

format CL4Vlist "
[link][Howto][/link]"

The top level of the hierarchy is “displayed” as Invisible (always used for

C.3 CREATING NEW COLLECTIONS 49

the top level). Its children are displayed as a Vlist (vertical list), which
simply lists the sections vertically. Each element of the list is on a
newline (“
”) and contains the Howto text, as a link to the document
itself.

The Subject classification in the Demo collection is the first one specified
(line b12 in Table 11b) and therefore denoted CL1; the Organization
classification is the third one (line b14 in Table 10b), CL3. Both
specifications are reproduced below; they are generated by the Hierarchy
classifier and therefore comprise a hierarchical structure of Vlists.

classify Hierarchy hfile=sub.txt metadata=Subject
sort=Title

classify Hierarchy hfile=org.txt metadata=Organization
sort=Title

The final classification for the Demo collection is Titles A-Z (CL2). This
is generated by a special classifier, HDLList, that is the same as an AZList
but has a “magazines” section added to it:

classify HDLList Title

This accounts for the four classify lines in Table 10b.

Coincidentally, there are also four format lines. We have already
discussed one, the CL4Vlist specification. The remaining three are the
first type of format string documented in Table 14. For example, line b19
of Table 10b formats the actual document text, with the title of the
relevant chapter or section preceding the text itself. Line b18 puts the
cover image at the top left of each document page.

Line b16 of Table 10b contains a rather complicated specification that
formats the query result list returned by a search. A simplified version of
the format string is

"<td valign=top>[link][icon][/link]</td>
 [link][Title][/link]</td>"

This is designed to appear as a table row, which is how the query results
list is formatted. It gives a small icon linked to the text, as usual, and the
document title, hyperlinked to the document itself.

In this collection, documents are hierarchical. In fact the above hyperlink
anchor will be the the title of the section that the query returns. However,
it would be better to augment it with the title of the enclosing section, the
enclosing chapter, and the book in which it occurs. There exists a special
metadata item, parent, which is not stored in documents but is implicit in

50 BUILDING COLLECTIONS

any hierarchical document, that can produce such a list. This will either
return the parent document, or if used with the qualifier All, the list of
hierarchically enclosing parents, separated by a character string that can
be given after the All qualifier. Thus

"<td valign=top>[link][icon][/link]</td>
 <td>{[parent(All’: ‘):Title]: }[link][Title][/link]</td>"

will have the desired effect of producing a list of the book title, chapter
title, etc that enclose the target section, separated by colons, with a further
colon followed by a hyperlink to the target section’s title.

Unfortunately, if the target is itself a book, there is no parent and so an
empty string will appear followed by a colon. To remove this requires a
conditional statement. For this reason, conditional if and or … else
statements can be placed in format strings:

{If}{[metadata], action-if-non-null, action-if-null}
{Or}{action, else another-action, else another-action, etc}

In both cases, curly brackets are used to signal that the statements should
be interpreted and not just printed out as text. The If tests whether the
metadata is empty and takes the first clause if not, otherwise the second
one (if it exists). Any metadata item can be used, including the special
metadata parent. The Or statement evaluates each action in turn until one
is found that is non-null. That one is sent to the output and the remaining
actions are skipped. Currently, If and Or statements cannot be nested.

Returning to line b16 of Table 10b, the full format string is

"<td valign=top>[link][icon][/link]</td>
 <td>{If}{[parent(All’: ‘):Title],
 [parent(All’: ‘):Title]:
}[link][Title][/link]</td>"

This precedes the parent specification with a conditional that checks
whether the result will be empty, and only outputs the parent string if it is
present. Incidentally, the parent can be qualified by Top instead of All,
which gives the top-level document name that encloses a section—in this
case, the book name. No separating string is necessary with Top.

Some final examples will illustrate other features. A DateList is used in
the Dates classification of the Computists’ Weekly collection (which
happens to be the second classifier, CL2). The DateList classifier differs
from AZList in that it always sorts by Date metadata, and the bottom
branches of the browsing hierarchy use DateList instead of Vlist, which
causes the year and month to be added at the left of the document listings.

classify AZSectionList metadata=Creator

C.3 CREATING NEW COLLECTIONS 51

format CL2Vlist "<td>[link][icon][/link]</td>
<td>[Creator]</td>
<td> [Title]</td>
<td>[parent(Top):Date]</td>"

The format specification shows these Vlists in the appropriate way.

The format-string mechanism is very powerful, but not very easy to learn.
The best way is by examining collection configuration files for existing
collections. Format strings are interpreted at display time: any changes in
a collection configuration file take effect immediately, without any need
for rebuilding the collection. This makes experimentation easy and
attractive.

Subcollections and language-specific indexes

Finally we sketch the subcollection and language-specific index facilities,
which are not used in the Demo collection. Subcollections can be defined,
and separate indexes built for each one. For example, in one collection
there is a large subset of documents entitled Food and Nutrition Bulletin.
Three indexes are created, all at the section level: one for the entire
collection, another for the Food and Nutrition Bulletin documents, and
the third for the remaining documents. The configuration file contains the
following lines:

indexes section:text
subcollection fn "Title/^Food and Nutrition Bulletin/i"
subcollection other "!Title/^Food and Nutrition
Bulletin/i"
indexsubcollections fn other fn,other

The second and third lines define subcollections called fn, which contains
the Food and Nutrition Bulletin documents, and other, which contains the
remaining documents. The third field of these definitions is a Perl regular
expression that identifies these subsets using the Title metadata: we seek
titles that begin with Food and Nutrition Bulletin in the first case and ones
that do not in the second case (note the “!”). The final i makes the pattern-
matching case-insensitive. The metadata field, in this case Title, can be
any valid field, or Filename to match against the document’s original
filename. The fourth line, indexsubcollections, specifies three indexes:
one for the fn subcollection, one for the other subcollection, and the third
for both subcollections (i.e. all the documents). Note that if two entries
had been specified on the indexes line, the total number of indexes
generated would have been six rather than three.

If a collection contains documents in different languages, separate
indexes can be built for each language. Language is a metadata statement;

52 BUILDING COLLECTIONS

values are specified using the ISO 639 standard two-letter codes for
representing the names of languages—for example, en is English, zh is
Chinese, and mi is Maori. Since metadata values can be specified at the
section level, parts of a document can be in different languages.

For example, if the configuration file contained

indexes section:text section:Title document:text
paragraph:text
languages en zh mi

section text, section title, document text, and paragraph text indexes
would be created for English, Chinese, and Maori—twelve indexes
altogether. Adding a couple of subcollections multiplies the number of
indexes again. Care is necessary to guard against index bloat.

(This index specification could be defined using the subcollection facility
rather than the languages facility. However, since the current syntax
precludes creating subcollections of subcollections, it would then be
impossible to index each language in the subcollections separately.)

www.nzdl.org

D
Installing the Greenstone

software

We now turn to some more technical aspects of the software. To make
your computer into a Greenstone server, you need to install the
Greenstone software, and we first explain how to do this under Unix and
Windows operating systems. Under Unix, it is easy to install the full
software; under Windows you can install different parts of it depending
on what you want to do. We assume that you already have Web server
software installed. Greenstone uses three packages that you will have to
obtain from elsewhere:

• STL, the C++ standard template library
(www.sgi.com/Technology/STL)

• PERL 5, the PERL programming language
(www.gnu.org/software/perl)

• GDBM, the GNU database system (www.gnu.org/software/gdbm)
(the Windows version is included with Greenstone in
packages/wingdbm)

MG, the Managing Gigabytes full-text indexing program, is contained
within the Greenstone software and will be installed as part of the
installation procedure. Greenstone can use the Fast CGI system to speed
up operation. If this is not installed, it will work as a regular CGI script.
Any bugs or installation problems should be reported to
greenstone@cs.waikato.ac.nz.

Having explained how to install the software, we describe in Section D.3
how to make a standalone CD-ROM containing particular collections that
can then be distributed for others to use. Then we examine the
configuration files that allow you to configure Greenstone to run under
your system, and follow this up by a walk through the directory structure
containing the Greenstone software. The next section, D.6, describes the
user logging facility, and following that we look at the maintenance and

54 INSTALLING THE GREENSTONE SOFTWARE

administration facilities that are built into the Greenstone system. It is
easy to translate the interface into different languages, and section D.7
tells you what you need to know in order to extend Greenstone to
accommodate languages that are not yet supported.

D.1 Installing on Unix

Here is the procedure for installing the Greenstone software on Unix.

1. Download the gsdl distribution (currently version 2.11, in file
gsdl-2.11.tar.gz) from www.nzdl.org/technology

2. Extract the gzipped tar archive and cd to the gsdl directory it creates
type tar xvzf gsdl-2.11.tar.gz

cd gsdl

3. Run the configure script using ./configure to check the resources on
your system and configure the Greenstone software accordingly.

type ./configure
4. Compile the Greenstone software by running make.

type make
5. Install the software by running make install. This installs the newly-

compiled binaries to all the right places; it places the compiled
executable file in the $FSDLHOME/cgi-bin directory.

type make install
6. To build the demonstration collection that comes with the distribution,

run the builddemo.sh script from within the gsdl directory.
type builddemo.sh

7. The cgi-bin/gsdlsite.cfg must be altered to suit your site. Typically
you’ll need to edit the httpprefix (the Web path to the gsdl directory),
httpimg (the path to gsdl/images), and gsdlhome fields.

edit cgi-bin/gsdlsite.cfg appropriately
8. Move all the files in $GSDLHOME/cgi-bin directory to your system’s

cgi-bin directory, to make them active.
type mv cgi-bin/* /usr/local/apache/cgi-bin

9. Using a Web browser, look at the URL …/cgi-bin/library. This is the
home page of your Greenstone system. The small test collection demo
will be the only collection shown at this stage.

10. Download other collections from www.nzdl.org. The collections
available are shown in Table 16, along with approximate sizes (tar’d
and gzipped).

D.2 INSTALLING ON WINDOWS 55

Table 16 Collections and their sizes

collection abbrev built size
(Mb)

download
size (Mb)

Computer science bibliography csbib 866 ?
Computer science technical reports cstr 2010 ~1800
Project Gutenberg gutenberg 432 457
HCI bibliography hcibib 36 5
Humanity Development Library hdl 199 387
Indigenous Peoples ipc 7.5 4
Maori newspapers niupepa 12 ?
Oral history ohist 2.5 ?
The computists weekly tcc 21 8
Tidbits magazine tidbits 10 5
United Nations University collection unu 52 ?
Women's history whist 6 ?

3654

D.2 Installing on Windows

The Greenstone software works equally well under Windows and Unix.

Installing binaries

There are three different types of library executable for windows:

1. A single-user version for collections on CD-ROM or hard drive. This
cannot be accessed from other machines.

2. A server version of the above which can be accessed from other
machines. This contains its own self-contained Web server.

3. A CGI application for running on an existing Web server (Apache, IIS
or similar).

The source code for these versions is very similar. The only difference
between the first two is that one line of code is commented out. The
difference with the third is that the makefile is edited to replace a couple
of .cpp and .h files.

The third version provides exactly the same facilities as the Unix system
and can be used to serve collections in just the same way. Two files are to
be downloaded and placed in the system’s cgi-bin directory: library.exe
and gsdlsite.cfg. Edit the site configuration file to set the $GSDLHOME
variable to the GSDL home directory on your system.

56 INSTALLING THE GREENSTONE SOFTWARE

Installing the source code

If you want to create new collections or work on the Greenstone software
itself, you will need to install the source code. This gives you the ability
to

• build collections
• modify the building or library (interface) code to suit your needs
• compile the library to run through a web server
• compile the library to run as a stand-alone program off cd-rom or

hard disk.

Windows installation is very similar to the Unix procedure. However, we
do not yet have an equivalent to the configure script described above for
Unix—we have been concentrating instead on making the Unix
installation as smooth as possible. Eventually we will provide an easily-
installable package using InstallShield. However, at the moment it must
be done manually.

STL, the C++ Standard Template Library, will need to be downloaded
and installed; there are several Windows ports available. In fact, despite
its name, there are different versions of the Standard Template Library.
We recommend STLport-3.2, which you can download from
www.stlport.org. (We have had some trouble with other versions, such as
Objectspace STL.) To build collections, the PERL programming language
must be downloaded and installed.

Having installed STL, download the appropriate gsdl package from
www.nzdl.org/technology and unzip it. To compile the library, perform
the following steps using nmake (or make on some systems) in the
$GSDLHOME directory. Compilation is known to work with the
Microsoft C++ compiler; other compilers may require some modifications
to be made to the software.

1. Compile wingdbm. This is a port of the GDBM database software and
resides in gsdl\packages\gdbm.

type cd gsdl\packages\gdbm
nmake win32.mak

2. Compile the gsdl\lib directory. This code is shared by both the library
and some of the building utilities.

type cd gsdl\lib
nmake win32.mak

3. Compile and install txt2db.exe. This is the utility used to create
GDBM databases while building a collection, and resides in
gsdl\src\txt2db. It will be installed into gsdl\bin\windows.

type cd gsdl\src\txt2db

D.3 MAKING A GREENSTONE CD-ROM 57

nmake win32.mak
nmake install /F win32.mak

4. Compile and install db2txt.exe, a utility for viewing a GDBM database
as text which is useful when debugging a new collection.

type cd gsdl\src\db2txt
nmake win32.mak

nmake install /F win32.mak

5. Compile and install hashfile.exe, a utility used for generating unique
identifiers for each document while importing and building.

type cd gsdl\src\hashfile
nmake win32.mak

nmake install /F win32.mak

6. Compile and install mg, in gsdl\packages\mg. Compilation creates
several .exe files in gsdl\packages\mg\src\text; they should be moved
manually to the bin directory.

type cd gsdl\packages\mg\lib
nmake win32.mak

copy gsdl\packages\mg\src\text*.exe gsdl\bin\windows

7. The cgi-bin/gsdlsite.cfg must be altered to suit your site. Typically
you’ll need to edit the httpprefix (the Web path to the gsdl directory),
httpimg (the path to gsdl/images), and gsdlhome fields.

type move etc\gsdlsite.cfg C:\apache\cgi-bin
edit cgi-bin/gsdlsite.cfg appropriately

8. Compile library.exe for Windows, in the form of a CGI script for a
Web server—as when running under Unix. (An alternative is to
compile with web serving software included, as when putting software
onto CD-ROM; see next section). Make the collection server and then
the receptionist; this creates a library.exe file in gsdl\src\recpt that you
should move (temporarily) to gsdl\cgi-bin.

type cd gsdl\src\colservr
nmake win32.mak

cd gsdl\src\recpt
nmake win32.mak

move gsdl\src\recpt\library.exe gsdl\cgi-bin

9. Now move all the files in $GSDLHOME/cgi-bin directory into to
your system’s cgi-bin directory, to make them active.

type move gsdl\cgi-bin* C:\apache\cgi-bin
(Alternatively you can just execute gsdl\cgi-bin\library.exe directly from

the command line.)

D.3 Making a Greenstone CD-ROM

The process of putting a Greenstone collection on to a CD-ROM involves
three stages. First, it is necessary to install the Greenstone software as
described above, except that, in step 8, library.exe is compiled with web
serving software included. Second, the collection is built in the ordinary
way. Third, a CD-ROM installation package is created; we use the
standard InstallShield package for this.

58 INSTALLING THE GREENSTONE SOFTWARE

The first stage involves replacing step 8 above. Before doing this, you
need to create a new project using Visual C++, a fairly lengthy process.
Bring up the Project Settings dialog box:

Under C/C++, ensure that the following preprocessor definitions are in
place:

WIN32, SHORT_SUFFIX, _LITTLE_ENDIAN, __WIN32__, PARADOCNUM,
HAVE_CONFIG_H, GSDL_NAMESPACE_BROKEN

If using STLport (this will differ for other STL packages):

__STL_NO_NEW_IOSTREAMS, GSDL_USE_IOS_H

Include the following directories in the search path (put /I "directory"
under project options):

gsdl\packages\mg
gsdl\packages\mg\lib
gsdl\packages\mg\src\text
gsdl\packages\wingdbm
gsdl\lib
gsdl\src\colservr
gsdl\src\recpt
gsdl\src\w32server

the path to STL (e.g. C:\STLport-3.2\stlport)

Under Link, type in the output filenames, e.g.

gsdl\library.exe, gsdl\librarydebug.exe

Include the following library modules:

gsdl\packages\mg\lib\libmg.lib
gsdl\packages\mg\src\text\libtextin.lib
gsdl\packages\wingdbm\gdbm.lib

any libraries required by STL

Next insert all the necessary files into the project, as follows.

From gsdl\lib:

fileutil.cpp, gsdlunicode.cpp, display.cpp, gsdltimes.cpp,
gsdlconf.h, cfgread.cpp, text_t.cpp.

From gsdl\src\colservr:

colservrconfig.cpp, mgq.c, phrasesearch.cpp, source.cpp,
filter.cpp, querycache.cpp, mgsearch.cpp, browsefilter.cpp,
maptools.cpp, queryfilter.cpp, collectserver.cpp,
mggdbmsource.cpp, queryinfo.cpp.

From gsdl\src\recpt:

D.3 MAKING A GREENSTONE CD-ROM 59

OIDtools.cpp, converter.cpp, invbrowserclass.cpp,
action.cpp, datelistbrowserclass.cpp, recptproto.cpp,
authenaction.cpp, documentaction.cpp, nullproto.cpp,
statusaction.cpp, browserclass.cpp, extlinkaction.cpp,
pageaction.cpp, tipaction.cpp, browsetools.cpp,
formattools.cpp, pagedbrowserclass.cpp,
hlistbrowserclass.cpp, pingaction.cpp, usersaction.cpp,
cgiargs.cpp, htmlbrowserclass.cpp, queryaction.cpp,
vlistbrowserclass.cpp, cgiutils.cpp, htmlgen.cpp,
querytools.cpp, htmlutils.cpp, receptionist.cpp,
comtypes.cpp, infodbclass.cpp, recptconfig.cpp,
delhistoryaction.cpp, historydb.cpp.

From gsdl\src\w32server:

netio.cpp, server.ico, wincgiutils.cpp, cgiwrapper.cpp,
fnord.cpp, httpsrv.cpp, server.rc, gsdlcol.bmp,
newgsdl.bmp, settings.cpp, conftools.cpp, httpreq.cpp,
locate.cpp, parse.cpp, startbrowser.cpp, d_winsock.cpp,
httpsend.cpp, resource.h.

To complete this first stage, replace step 8 of the previous section with
this:

8. Use Visual C++ to compile the library to create the output file as
specified under Link above (e.g. gsdl\library.exe).

The second stage, having set up the software as described above, is to
build the collection you wish to put on to CD-ROM. This is done just as
described in Section C of this manual. For the Demo collection, for
example, you need to execute import.pl to import it, then buildcol.pl to
build it, and finally remove the old contents of the index directory and
move the contents of the building directory into it.

type import.pl demo
build.pl demo

del gsdl\collect\demo\index*
move gsdl\collect\demo\building* gsdl\collect\demo\index

The third and final stage is to create a CD-ROM installation package for
the digital library software and the collection itself using InstallShield.
This involves the following steps.

1. Edit gsdl\src\checkis\checkis.cpp and compile checkis.exe, which is
the small program run automatically when the CD-ROM is inserted in
the drive to check the registry to see if the CD is already installed (if
not it runs setup.exe, otherwise it asks the user whether to run the
library). Lines 16–17 set the names of the registry keys to check the
collection and volume names; they will need to be altered
appropriately. Line 59 gives the message to display when asking the
user whether to run the library; this may also need to be changed.

60 INSTALLING THE GREENSTONE SOFTWARE

2. Use InstallShield project (as described below) to create a disk1
directory.

3. Use CD-writing software to write the contents of disk1 on to CD-
ROM.

Creating an initial InstallShield project is a fairly involved process;
however, once done it is easily edited for each new CD-ROM to be
created. (We can supply something to get you started). The main tasks are
as follows.

• Edit the string resources used by the project. These include strings
used by the dialog boxes during the setup process, and
collection/volume name registry keys—which should correspond to
those used in checkis.exe.

• Insert the appropriate files into the project—all files to be placed on
the CD-ROM, including library.exe, checkis.exe, autorun.inf,
README.txt, all collection files, macro files, indexes, etc.

• Compile the InstallShield script and build the media, a lengthy step
if many files have been included. Once built, a single directory
(normally disk1) contains all files to be placed on the CD-ROM
(including ones generated by Installshield, like setup.exe).

D.4 Configuration files

The operation of the software is controlled by several configuration files.
We have encountered the collection-specific configuration file collect.cfg
in Part C when learning how to build collections, and the format of this
file was described there. The Greenstone system includes other
configuration files, all of which are read using the same software and so
have the same format.

The receptionist can run in a “general” mode or in a “collection-specific”
mode. In the former model it reads two configuration files, in this order:

.../cgi-bin/gsdlsite.cfg
etc/main.cfg

The site configuration file gsdlsite.cfg, which resides in the system’s cgi-
bin directory, is used to configure the Greenstone software for the site
where it is installed. Typical entries in these files are shown in Table 17.
It is designed for keeping configuration options that are particular to a
given site, like httpimg, gwcgi and $GSDLHOME.

The main configuration file main.cfg contains information that is common
to all collections served by the receptionist. It resides in

$GSDLHOME/etc.

D.5 WHERE TO FIND THE SOFTWARE 61

In “collection-specific” mode the receptionist will read four configuration
files:

.../cgi-bin/gsdlsite.cfg
collect/collection-name/etc/site.cfg
etc/main.cfg
collect/collection-name/etc/collect.cfg

As their name implies, collection configuration files are collection-
specific, and may override settings in the main configuration files.

Table 17 Entries in the system configuration files
gsdlsite.cfg httpprefix HTTP address of $GSDLHOME
 httpimg HTTP address of the directory containing the images used in the interface
 gwcgi HTTP address of the CGI script being run. (If the HTTP server sets the

environment variable $SCRIPT_NAME, this overrides it)
 gsdlhome Directory that corresponds to $GSDLHOME
 maxrequests Maximum number of requests a Fast CGI process will serve before it exits
etc/main.cfg maintainer Email address of the receptionist’s maintainer
 macrofiles Display macro files that are to be loaded by the receptionist
 status Status page enabled/disabled
 logcgiargs Enables/disables logging of user activity
 usecookies Determines whether “cookies” are used to identify users

D.5 Where to find the software

The Greenstone software is stored in the directories shown in Table 18. In
the src directory, the receptionist is the program that organizes the
Greenstone user interface and presents it to the user over the Web
interface, while one collection server process is created for each
collection to manage interaction with it. The other programs are used at
built time: txt2db to create the GDBM database and hashfile to generate
the OID of a document. Each collection’s GDBM file is stored as a .bdb
file (or .ldb on little-endian machines) in the collection’s index/text
directory, and the db2txt program is a useful tool for viewing a GDBM
database as text. The executable versions of these utilities are stored in
bin/$GSDLOS.

Moving to the bin directory, $GSDLOS is a shell variable that identifies
the operating system being used: this is necessary when a file system is
shared between machines with different operating systems. Possible
values are linux, sunos, and windows, and the appropriate value is set in

62 INSTALLING THE GREENSTONE SOFTWARE

Table 18 The directories that contain the Greenstone software system

Directory Contents
$GSDLHOME /src C++ source code

/recpt Program that organizes the Greenstone user
interface (approx 11,500 lines of C++)

/colservr Program responsible for providing access to a
collection when it is being used (approx 5,500
lines)

/txt2db Program used at build time to create the GDBM
database

/db2txt Tool for viewing a GDBM database as text
/hashfile Program used at import or build time to

generate document OIDs
/bin Executable code

/$GSDLOS Binaries
/script Perl scripts

/cgi-bin All CGI scripts, to be moved to the system cgi-
bin directory

/perllib Perl modules used at build time
/plugins The plugins for handling documents of different

formats. The build software will look here first
when searching for plugins to build this
collection. This allows for collection specific
plugins to be written, existing plugins to be
overridden and changed, etc.

/classify The classifiers for sorting documents into
different classification types (e.g. a list sorted
by title, a hierarchical classification etc).
Collection specific classifiers (same as for
plugins).

/lib C++ code used by both receptionist and
collection server (approx 4,000 lines)

/packages /fcgi Source code for Fast CGI
/packages /mg Source code for MG
/unicode Unicode translation tables for the GB Chinese

character set
/etc Configuration files, initialization and error logs,

authorization databases
/macros Display macro files
/images Images used by interface
/docs Documentation

D.6 USER LOGS 63

the setup script. The Perl scripts are stored in files whose names end in
.pl. Although this is unnecessary for Unix systems, Windows systems
need the extension in order to execute these scripts properly.

At present (because as yet only the null protocol is implemented) the
receptionist and collection server code are compiled together to generate a
single executable file called library for the receptionist and collection
servers together. This is installed temporarily in the cgi-bin directory, the
contents of which must be moved into the system-dependent location for
CGI scripts. The cgi-bin directory also contains the site configuration file
gsdlsite.cfg, and any other CGI scripts that are necessary.

Turning to the perllib and lib directories, the Perl and C++ source code
both make substantial use of libraries. Examples of C++ code used by
both receptionist and collection server include text_t.cpp and text_t.h,
which implement the text_t string class used throughout all the code, and
display.cpp and display.h, which implement the display class for
manipulating and displaying the macro language that is used to specify
the contents of Web pages.

Some packages are also used by the system. Although it is really an
external package, the Fast CGI source code needs to be located with the
Greenstone software because references to it are compiled in with the
code. MG is the Managing Gigabytes scheme for full-text indexing and
search; the binaries are installed to bin/$GSDLOS.

Other subdirectories contain miscellaneous information used in the
Greenstone system. etc contains the top-level configuration file main.cfg,
the authorization databases key.db and users.db (both in GDBM format),
and error logs. macros contains macro files that are used for text display.
images contains all the images used by the interface. docs contains
documentation, including this manual and makecol.txt, a short beginners
guide to setting up new collections.

D.6 User logs

All user activity—every page that each user visits—can be recorded by
the Greenstone software. Logging is enabled by including the lines

logcgiargs true
usecookies true

in the appropriate configuration file. This is normally done in main.cfg to
turn on logging for all collections. (Currently it is not possible to control
logging at the collection level). Both options are false by default, so that

64 INSTALLING THE GREENSTONE SOFTWARE

no logging is done unless they are set. It is the logcgiargs line that
actually turns logging on and off. However, without usecookies the user’s
identity will not be recorded.

The log file is placed in $GSDLHOME/etc/usage.txt. Each line pertains to
a page visit. It contains five components: first the path to the receptionist
program (because several receptionists may share a log file), then the IP
address of the user’s computer, then a timestamp in square brackets, then
the CGI arguments in parentheses, and finally the name of the user’s
browser (Netscape is called “Mozilla”). Here is a sample line, split for
ease of reading into these components (though it would contain no line
breaks in the log file).

/fast-cgi-bin/niupepalibrary
its-www1.massey.ac.nz
[950647983]
(a=p, b=0, bcp=, beu=, c=niupepa, cc=, ccp=0, ccs=0, cl=,
cm=, cq2=, d=, e=, er=, f=0, fc=1, gc=0, gg=text, gt=0, h=,
h2=, hl=1, hp=, il=l, j=, j2=, k=1, ky=, l=en, m=50, n=,
n2=, o=20, p=home, pw=, q=, q2=, r=1, s=0, sp=frameset,
t=1, ua=, uan=, ug=, uma=listusers, umc=, umnpw1=, umnpw2=,
umpw=, umug=, umun=, umus=, un=, us=invalid, v=0, w=w, x=0,
z=130.123.128.4-950647871)
"Mozilla/4.08 [en] (Win95; I ;Nav)"

The last CGI argument, “z”, gives the value of the cookie: it comprises
the user’s IP number followed by the timestamp when they first accessed
the digital library.

D.7 Maintenance and administration

There is a maintenance and administration facility associated with each
Greenstone installation. This provides a variety of services, including
viewing on-line logs of internal errors encountered by the system,
maintaining and updating collections, accessing technical information
such as CGI arguments, and adding new users. This facility can be
accessed from www.nzdl.org, but it is “invisible”—there is no visible link.
To enter it, click a hidden button below the link to PDF information
sheets under the “New Zealand Digital library Project” heading. The
following sections correspond to the menu items displayed at the lefthand
side of every Greenstone Maintenance and admininstration page (for
example, Figure 2).

User management

Greenstone has the facility for collections to perform authentication
actions before returning information to users, by requesting a user name

D.7 MAINTENANCE AND ADMINISTRATION 65

and password. Current
collections do not use this
facility. However, users can
be listed and altered from the
administration page. The
ability to do this is of course
also protected: only users
who have administrative
privileges can add new users.
It is also possible for each
user to belong to a list of
“groups”. At present, the
only extant group is
“administrator”, membership
of which allows one to add
and remove users etc.

User information is recorded
in two GDBM databases:
etc/users.db and etc/key.db.
The first contains all
information relating to users.
The second contains
temporary keys that are
created for each page access.
These expire after ten
minutes (five minutes for the
administrators).

Currently, the system
prevents access to the status
action by anyone not
belonging to the
“administrator” group. It
would be equally simple to
prevent access to other parts
of the receptionist, and to
create public and private
versions of collections.

Figure 2 The general information page

Figure 3 Information displayed for the Demo collection

66 INSTALLING THE GREENSTONE SOFTWARE

Information

You can view a general information page like that in Figure 2. This
summarizes various information about the Greenstone installation, most
of which will be obvious to those who work with the software.

A protocols menu item gives information about each of the collections
offered by the system; clicking a particular collection name brings up
information about that collection, gathered from its collection
configuration file. Figure 3 shows the information displayed for the Demo
collection.

The user interface code (i.e. the “receptionist”) uses actions to
communicate the wishes of the user. These actions correspond to the CGI
argument labeled a. For example, if a=status the receptionist invokes the
status action (which displays the status page). Table 19 shows the
principal actions currently supported by Greenstone. A menu item gives
access to lists of all actions supported by the system, and another leads to
the arguments that these actions take.

Table 19 Principal actions supported by Greenstone

Action Meaning
a The authentication action
d The document action (for displaying document text, table of

contents etc.)
p The page action (for displaying general interface pages like the

help page, preferences page etc.)
ping The ping action (for pinging a collection server to test for

response)
q The query action (for doing all searching)
status The status action (for displaying information about the

receptionist and any collection servers it knows of)

Collections

It is possible for end-users to build and manage collections through an
interactive interface, without having to work with computer files directly.
The interface is designed to resemble standard installation packages that
allow users to specify what they want done using a succession of menu
pages. (Users have to have administrative privileges before they can
create collections, however.) Facilities are provided to create a new
collection, edit an existing one, rebuild a collection, and delete a
collection.

D.8 TRANSLATING THE INTERFACE INTO OTHER LANGUAGES 67

Logs

Finally, two kinds of logs can be examined: initialization logs and error
logs. These are only really of interest to people maintaining the software.
Error logs are presently not working.

D.8 Translating the interface into other languages

The Greenstone software is designed to make it easy to present
collections in a variety of different languages. At present, three languages
are supported for the user interface—English, Maori, and Chinese. There
is a Maori newspaper collection and a Chinese-language collection
available from the NZDL home page, but in fact any collection can be
viewed in all three languages: it is just a matter of making a choice on the
Preferences page. This will shortly be altered to make it possible to
specify which presentation languages are appropriate for each particular
collection. When any particular text or icon is not available in the chosen
language, the software is designed to default to the English-language
equivalent.

New languages can be added by translating all items in the macro file
english.dm and creating a new file, say maori.dm. It will be necessary to
create new versions of all the textual icons as GIF images. The filenames
for these are contained in english.dm and appropriate new filenames
should be placed in the .dm file for the new language. In order to make
the new.dm file active, all that is necessary is to place it in the macros
directory and update the macrofiles line in the main configuration file
main.cfg to include the new filename.

