Greenstone3 : A modular digital library.

Katherine Don

Department of Computer Science
University of Waikato
Hamilton, New Zealand

Greenstone Digital Library Version 3 is a complete redesign and reimplementatio
of the Greenstone digital library software. The current version (&teae2) en-
joys considerable success and is being widely used. Greenstone3pitillica on

this success, and in addition it will

e improve flexibility, modularity, and extensibility

e lower the bar for “getting into” the Greenstone code with a view to under-
standing and extending it

e use XML where possible internally to improve the amount of self-documentation

e make full use of existing XML-related standards and software

e provide improved internationalization, particularly in terms of sort order, in-
formation browsing, etc.

¢ include new features that facilitate additional “content management” opera-
tions

e operate on a scale ranging from personal desktop to corporate library

e easily permit the incorporation of text mining operations

e use Java, to encourage multilinguality, X-compatibility, and to permit easier
inclusion of existing Java code (such as for text mining).

Parts of Greenstone will remain in other languages (e.g. MG, MGPP);JiN&(
Native Interface) will be used to communicate with these.

A description of the general design and architecture of Greenstone®/is ¢
ered by the documeiithe design of Greenstone3: An agent based dynamic digital
library (design-2002.ps, in the docs/manual directory).

This documentation consists of several parts. Section 1 is for administrators
and covers Greenstone3 installation, how to access the library, and dommésa
tration issues. Section 2 is for users of the software, and looks at usirsgthple
collections, creating new collections, and how to make small customizations to the
interface. The remaining sections are aimed towards the Greenstonepggvelo
Section 3 describes the run-time system, including the structure of the saftwar
and the message format. Section 4 describes how to add new feature®in Gre
stone, such as how to add new services, new page types, new plugdifteieent
document formats. Section 5 describes how to make Greenstone run irtautkstr

fashion, using SOAP as an example communications protocol. Finally, there ar
several appendices, including how to install Greenstone from CVS, sotes

on Tomcat and SOAP, and a comparison of Greenstone2 and Greéh&ionat
statements.

Contents

1 Greenstone installation and administration
1.1 Getandinstall Greenstone
1.2 Howthelibraryworks

1.2.1 Restartingthelibrary
1.3 Directorystructure e

1.4 Sitesandinterfaces

15 ConfiguringTomecat

1.6 Configuring a Greenstone library

1.6.1 Site configurationfile.
1.6.2 Interface configurationfile

1.7 Run-time re-initialization,

2 Using Greenstone3

2.1 Usingacollection,

2.2 Buildingacollection,
2.2.1 Usingthe LibrarianiInterface
2.2.2 Importing from Greenstone2

2.2.3 Usingcommand line building
2.3 Collection configurationfiles

2.3.1 collectionlnitxml oL
2.3.2 collectionConfig.xml
2.3.3 buildConfig.xml,
2.4 Formatting the collection
2.4.1 Modifying the “format” xslttemplates
2.4.2 Changing the service textstrings
2.5 Customizingtheinterface

2.5.1 Modifying an existing interface

2.5.2 Defininganewinterface

2.5.3 Changing the interface language

3 Developing Greenstone3: Run-time system
3.1 Overviewofmodules??
3.2 Startupconfiguration
3.3 Messagepassing
3.4 ’describe’-typemessages
3.5 ’system’-typemessageso
3.6 ’'format-typemessages e
3.7 ’status’-typemessages e

3.8 ’process’-typemessages e e e e

3.8.1 ‘’query-typeservices
3.8.2 ’browse'-typeservices
3.8.3 retrieve’-typeservices

3.8.4 ’process’-typeservices
3.8.5 ‘’applet-typeservices.
3.8.6 ’enrich’-typeservices.
3.9 Pagegeneration,
3.9.1 ‘’page’-type requests and their arguments
3.9.2 pageformat.
3.93 Receptionists L.
3.9.4 Collection specific formatting
3.95 CGlarguments
3.9.6 Pageaction
3.9.7 Queryaction
3.9.8 Appletaction,
3.9.9 Documentaction
3.9.10 XML Documentaction
3.9.11 GS2Browseaction
3.9.12 Systemaction.
3.10 Other code information

Developing Greenstone3 : Adding new features

4.1 Creatingand usingnew services
4.1.1 Creatingtheservice.
4.1.2 Loadingtheservice.
4.1.3 Usingtheservice

4.2 creating new actions/pages

43 newinterfaces oo

4.4 Newtypesofcollections

45 Thegs2interface

Distributed Greenstone

5.1 Servingasiteusingsoap,
5.2 Connectingto a site web service

Using Greenstone3 from CVS

Tomcat

B.1 Proxying Tomcatwithapache.
B.2 Running Tomcat behindaproxy

SOAP

C.1 DebuggingSOAP

Tidying up the formatting for imported Greenstone2 collections

D.1 Format statements: Greenstone2 vs Greenstone3
D.2 CleaninQupmacroS v v v v e

1 Greenstone installation and administration

This section covers where to get Greenstone3 from, how to install it amddhan
it. The standard method of running Greenstone3 is as a Java servlet.oVidepr
the Tomcat servlet container to run the servlet. Standard web serversenzdje
to be configured to provide servlet support, and thereby remove thibtoasse
Tomcat. Please see your web server documentation for this. This doctim®enta
assumes that you are using Tomcat. To access Greenstone3, Tomda¢ stasted
up, and then it can be accessed via a web browser.

Ant (Java’s XML based build tool) is used for compilation, installation and
running Greenstone. Thei | d. xni file is the configuration file for the Greenstone
project, andbui | d. properti es contains parameters that can be altered by the user.

1.1 Getand install Greenstone

Greenstone3 is available for download from Sourceforge:

htt ps://sourceforge. net/ proj ects/ greenst one3. There are Windows, Linux,
and source releases. The binary releases are self-installing eXesutiwnload
and run the file to install. A series of prompts will guide you through the instal-
lation process. The source release is a gzip'd tar file. Unzip and untachigisk
build.properties, then runant instal I’ to configure and compile the code.

The Greenstone3 library can be launched by running the servergonodris
is accessible from the Start menu on Windows, or by runningd¢Beser ver . sh/ bat
script in the top levegr eenst one3 directory. This program will start up the Tom-
cat web server and launch a browser.

Alternatively, you can start it up using Ant: rumant start’, which starts up
Tomcat, then in a browser go bot p: / /| ocal host : 8080/ gr eenst one3
(orhttp://your-conputer-name: your - chosen- port/ greenst one3).

This gets you to a welcome page containing links to four servlets:dkeserviet
(this allows you to check that Tomcat is running properly); the standasdar y
servlet which servesocal si t e site with thegs2 interface; theys3l i brary servlet
which serves ocal sit e using thedef aul t Greenstone3-style interface; and the
gat eway servlet, which servast eway site with thedef aul t interface. Theat eway
site uses a SOAP connection to communicate Wiidal si t e, and demonstrates
the library working in a distributed fashion. The SOAP connection is ndbleda
by default - to enable it, runant depl oy-1ocal site’ .

Greenstone3 is also available through CVS (Concurrent Versioninigrgys
This provides the latest development version, and is not guaranteedstatije.
Appendix A describes how to download and install Greenstone3 from CVS

1.2 How the library works

The standard library program is a Java servlet. We use the Tomcat semiainer
to present the servlets over the web. Tomcat takes CGlI-style URLs asdgthe

arguments to the servlet, which processes these and returns a pagklbf A
far as an end-user is concerned, a servlet is a Java version of pr@gam. The
interaction is similar: access is via a web browser, using arguments in a URL.

Other types of interfaces can be used, such as Java GUI programsSege
tion 4.3 for details about how to make these.

1.2.1 Restarting the library

You can restart Tomcat by clicking 'Restart Server’ on the little servegiam.
You should restart the server any time you make changes in the followinigdse
changes to take effect:

o $GSDL3HOVE/ VEEB- | NF/ web. xmi
e $GSDL3SRCHOVE/ packages/ t ontat/ conf/server. xmn
e any classes or jar files used by the servlets

1.3 Directory structure

Table 1 shows the file hierarchy for Greenstone3. The first partsbomewcommon
stuff which can be shared between Greenstone users—the souregiesbetc.
The second part shows the file hierarchy for the web directory, whigipcises the
greenstone3 context for Tomcat, and is accessible via Tomcat. The maitodee
are for sites and interfaces: there can be several sites and intgréadestallation,
and they are described in the following section.

Two environment variables used by Greenstone3 are often mentioned in this
manual: $GSDL3SRCHOVE and $GSDL3HOVE. $GSDL3SRCHOVE refers to the top-level
gr eenst one3 directory, while$GSDL3HOME refers to theneb directory. The web di-
rectory contains everything needed to serve the Greenstone3 libragyTusncat,
and doesn't necessarily need to live with the rest of the Greenstone&so

1.4 Sites and interfaces

Sites and interfaces contain the content and presentation informatioectigsfy,

for the digital library. A site is comprised of a set of collections and possibly
some site-wide services. An interface (in this web-based servlet corgexget

of images along with a set of XSLT files used for translating xml output froen th
library into an appropriate form—HTML in general.

One Greenstone3 installation can have many sites and interfaces, ancithese
be paired in different combinations. One instantiation of a servlet usesitme
and one interface, so every specified pairing results in a new servi@hoes For
example, a single site might be served with two different interfaces. Thisda®
different modes of access to the same content. e.g. HTML vs WML, oiaperh

Table 1: The Greenstone directory structure

directory description

greenstone3 The main installation directory—$GSDL3SRCHOME is set to
this directory

greenstone3/src Source code lives here

greenstone3/src/java/ main Greenstone3 java source code

greenstone3/src/packages Imported source packages from pgtems e.g. indexing
packages may go here

greenstone3/lib Shared library files

greenstone3/lib/java Java jar files not needed in the Greenstone3 runtime

greenstone3/lib/jni Jar files and shared library files (.so, .jnilib, .dlljieddor JNI
components

greenstone3/resources any resources that may be needed

greenstone3/resources/soap soap service description files

greenstone3/bin executable stuff lives here

greenstone3/bin/script some Perl and/or shell scripts

greenstone3/packages External packages that may be installed af gr@enstone,
e.g. Tomcat

greenstone3/docs Documentation

greenstone3/gli Greenstone Librarian Interface code

greenstone3/gs2build collection building code

greenstone3/web This is where the web site is defined. Any static HTML files

can go here. This directory is the root directory used by Tom-
cat when serving Greenstone3. $GSDL3HOME is set to this

directory.

greenstone3/web/WEB-INF The web.xml file lives here (servlet gordition information
for Tomcat)

greenstone3/web/WEB-INF/classes Individual class files needelIsgthilet go in here, also prop-

erties files for java resource bundles - used to handle all the lan-
guage specific text. This directory is on the servlet classpath
greenstone3/web/WEB-INF/lib jar files needed by the servlets go here
greenstone3/web/sites Contains directories for different sites—a siteti®acllec-
tions and services served by a single MessageRouter (MR). The
MR may have connections (e.g. soap) to other sites

greenstone3/web/sites/localsite An example site - the site configuration fdenkve
greenstone3/web/sites/localsite/collect The collections directory
greenstone3/web/sites/localsite/images Site specific images
greenstone3/web/sites/localsite/transforms Site specific transforms
greenstone3/web/interfaces Contains directories for different ioesfaan interface is de-
fined by its images and XSLT files
greenstone3/web/interfaces/default The default interface
greenstone3/web/interfaces/default/images The images for the defarftice
greenstone3/web/interfaces/default/js The javascript libraries for faeltimterface
greenstone3/web/interfaces/default/style The CSS stylesheets for dudt dakrface
greenstone3/web/interfaces/default/transforms The XSLT files foreffaaulll interface
greenstone3/web/applet jar files needed by applets can go here

providing a completely different look and feel for different audiencéterna-
tively, a standard interface may be used with many different sites—pravalin
consistent mode of access to a lot of different content.

Collections live in thecol | ect directory of a site. Any collections that are
found in this directory when the servlet is initialized will be loaded up. Public
collections will appear on the library home page, while private collections will b
hidden. These can still be accessed by typing in cgi arguments. Colleriprise
valid configuration files, but apart from this, nothing needs to be doneetsita
to use new collections. Collections added while Tomcat is running will not be
noticed automatically. Either the server needs to be restarted, or a catifigur
request may be sent to the library, triggering a (re)load of the collectiés ig&h
described in Section 1.7).

There are two sites that come with the distributiobeal si t e, andgat eway.

I ocal si t e has several demo collections, whijgét eway has nonegat eway spec-
ifies that a SOAP connection should be madedeal si t e. Getting this to work
involves setting up a soap server for localsite: see Section 5 for detaise @he
also two interfaces provided in the distributiafef aul t andgs2. The default in-
terface is a generic Greenstone3 interface, whilgglzanterface aims to look like
the old Greenstone?2 interface.

Each site and interface has a configuration file which specifies pararfaters
the site or interface—these are described in Section 1.6.

1.5 Configuring Tomcat

The file$GSDL3HOVE/ WEB- | NF/ web. xni contains the configuration information for
Tomcat. It tells Tomcat what servlets to load, what initial parameters to pass the
and what web names map to the servlets. There are four servlets spétified
web.xml (these correspond to the four servlet links in the welcome pag@&éan-
stone3d): one is a test servlet that just prints “hello greenstone” to a agsh [his
is useful if you are having trouble getting Tomcat set up. The other theetha
Greenstone library servlets described in Section li.byary, gs3library and
gat eway. Each servlet must specify which site and which interface to use. Having
multiple servlets provides a way of serving different sites, or the same siteawith
different style of presentatiosi t e_nanme andi nt er f ace_nane are just two exam-
ples of initialization parameters used by the library servlets. The full list is/sho
in Table 2.

For more details about Tomcat see Appendix B.

1.6 Configuring a Greenstone library

Initial Greenstone3 system configuration is determined by a set of XMEigzon
uration files. Each site has a configuration file that binds parameters feit¢he
siteConfig. xm . Each interface has a configuration filef er f aceConfi g. xnl ,
that specifies parameters for the interface. Collections also have Isevefig-

Table 2: Greenstone servlet initialization parameters

name sample value description
library_name library the web name of the servlet
interfacename default the name of the interface to use
site. name localsite the name of the local site to use (use either
site.name or the three remasite parameters)
remotesite name org.greenstone.sitel the name of a remote site (can be any}thing??
remotesite type soap the type of server running on the site
remotesite. address http://www.greenstone.org/The address of the server
greenstone3/services/
localsite
defaultlang en the default language for the interface
receptionisiclass MyReceptionist (optional) specifies an alternative Receptionist
to use (default is DefaultReceptionist)
messagerouteslass NewMessageRouter (optional) specifies an alternative Message-
Router to use (default is MessageRouter)
paramsclass GS2Params (optional) specifies an alternative GSParams
class to use

uration files; these are discussed in Section 2.3. The configuration fileeaate

in when the system is initialized, and their contents are cached in memory. This
means that changes made to these files once the system is running will not take
immediate effect. Tomcat needs to be restarted for changes to the intesface ¢
figuration file to take effect. However, changes to the site configurationditebe
incorporated sending a system command to the library. There are a desies o

tem commands that can be sent to the library to induce reconfiguration efedfitf
modules, including reloading the whole site. This removes the need to restart th
system to reflect these changes. These commands are described in $&ctio

1.6.1 Site configuration file

The file sitecConfig. xm specifies the URI for the sita ¢cal Si t eNane), the
HTTP address for site resources t{(pAddr ess), any Servi ced ust er s that the
site provides (for example, collection building), ag&t vi ceRacks that do not be-
long to a cluster or collection, and a list of known external sites to connect to
Collections are not specified in the site configuration file, but are deternbyned
the contents of the site’s collect directory.

The HTTP address is used for retrieving resources from a site outsickMh
protocol. Because asite is HTTP accessible through Tomcat, any filegiages)
belonging to that site or to its collections can be specified in the HTML of a page
by a URL. This avoids having to retrieve these files from a remote site via the XM
protocot.

1Currently, sites live inside the Tomcat greenstone3 root context, anefdohe all their content
is accessible over HTTP via the Tomcat address. We need to see if @arte cestricted. Also, if
we use a different protocol, then resources from remote sites mayto@@me through the XML.
Also, if we are running locally without using Tomcat, we may want to get thinfile:// rather than

<siteConfig>
<l ocal Si teNane val ue="org. greenstone. | ocal site"/>
<htt pAddress val ue="http://1 ocal host: 8080/ greenstone3/sites/|ocal site"/>
<servi ceC usterlList/>
<servi ceRackLi st/ >
<sitelist/>
</ siteConfig>

<si teConfi g>
<l ocal Si teNanme val ue="or g. gr eenst one. gsdl 1"/ >
<htt pAddress val ue="http://| ocal host: 8080/ greenst one3/sites/gsdl 1"/ >
<servi ceC usterlList>
<servi ceC uster nane="buil d">
<net adat aLi st >
<met adata nanme="Titl e">Col | ecti on buil der </ et adat a>
<met adat a nanme="Description">Builds collections in a
gsdl 2-styl e manner </ net adat a>
</ met adat aLi st >
<servi ceRackLi st >
<servi ceRack nane="GS2Construct"/>
</ servi ceRackLi st >
</ serviceC uster>
</ servi ceC usterlList>
<siteList>
<site name="org. greenstone. | ocal site"
address="http://| ocal host: 8080/ gr eenst one3/ servi ces/ | ocal site"
type="soap"/>
</siteList>
</ siteConfig>

Figure 1: Two sample site configuration files

Figure 1 shows two example site configuration files. The first example is for
a rudimentary site with no site-wide services, which does not connect texany
ternal sites. The second example is for a site with one site-wide service clus-
ter - a collection building cluster. It also connects to the first site using SOAP.
These two sites happen to be running on the same machine, which is why they ca
usel ocal host in the address. For sitgsdl 1 to talk to sitel ocal site, a SOAP
server must be run forocal si t e. The address of the SOAP server, in this case, is
http://1 ocal host: 8080/ greenst one3/ services/| ocal site.

Another element that can appear in a site configuration fiteeps aceLi st .
This must have and attribute, and may contain one or morepl ace elements.
Replace elements are discussed in Section 2.3. The list fourd ire@onf i g. xn
file can be applied to any collection by addingepl aceLi st Ref element (with
the appropriatéd attribute) to itscol | ecti onConfi g. xm file.

http://.

10

1.6.2 Interface configuration file

The interface configuration filent er f aceConfi g. xn lists all the actions that the
interface knows about at the start (other ones can be loaded dynamiéalfipns
create the web pages for the library: there is generally one Action peofyage.
For example, a query action produces the pages for searching, whileuandnt
action displays the documents. The configuration file specifies what iIsain
each action maps to (this is used in library URLSs for the a (action) parameger) e
QueryAction should use=qg. If the interface uses XSLT, it specifies what XSLT
file should be used for each action and possibly each subaction. This ihaksy
for developers to implement and use different actions and/or XSLT filesoutith
recompilation. The server must be restarted, however.

It also lists all the languages that the interface text files have been trahslate
into. These have aane attribute, which is the 1ISO code for the language, and a
di spl ayEl ement which gives the language name in that language (note that this
file should be encoded in UTF-8). This language list is used on the Erefes
page to allow the user to change the interface language. Details on how o add
new language to a Greenstonea3 library are shown in Section 2.5.3.

An opti onLi st element can be used to disable or enable some optional func-
tionality for the interface. Currently there are three options that can ddexha

highlightQueryTerms Whether search term highlighting is available
or not

berryBaskets Whether berry basket functionality is avail-
able or not

displayAnnotationService Whether any annotation services (specified in
the site config file) should be displayed with a
document or not.

An interface may be based on an existing one, for example, the gs2 imterfac
is based on the default interface. This means that it will use any images or tem-
plates from the base one unless overridden in the current oneasbent er f ace
attribute of the<i nt er f aceConf i g> element is used to specify the base interface.

1.7 Run-time re-initialization

When Tomcat is started up, the site and interface configuration files araeand
actions/services/collections loaded as necessary. The configuratiom ist#tie
unless Tomcat is restarted, or re-configuration commands issued.

There are several commands that can be issued to Tomcat to avoid having to
restart the server. These can reload the entire site, or just individlle¢tians.
Unfortunately at present there are no commands to reconfigure theacggedo
if the interface configuration file has changed, Tomcat must be restantdgose
changes to take effect. Similarly, if the Java classes are modified, Tomcabenus
restarted then too.

Currently, the runtime configuration commands can only be accessed by typin

11

<i nterfaceConfig>
<acti onLi st >
<action nane='p’ class=" PageAction’ >
<subacti on nane=" home’ xslt="home.xsl’/>
<subacti on nane=" about’ xslt="about.xsl’/>
<subaction nane="hel p’ xslt="hel p.xsl’/>
<subaction nane="pref’ xslt= pref.xsl’'/>

<subaction nane="nav’ xslt="nav.xsl’/><l-- used for the
col l ecti on header frane -->
<subaction nane="htm " xslt="htnml .xsl"/> <!-- used to put an
external page into a frame with a collection header-->
</ action>

<action nane='q class=" QueryAction’ xslt='basicquery.xsl’'/>
<action nanme="b’ class=" GS2BrowseAction’ xslt="classifier.xsl’'/>
<action name='a’' class="AppletAction’ xslt="applet.xsl’/>
<action nane="d class="DocunentAction’ xslt='docunment.xsl’/>
<action nanme='xd’ class=" XM._Docunent Acti on’ >
<subaction nane="toc’ xslt="docunent-toc.xsl’/>
<subacti on nane="text’' xslt="docunent-content.xsl’'/>
</ acti on>
<action name='pr’ class="ProcessAction’ xslt='process.xsl’'/>
<action nane='s’ class=" SystemAction’ xslt="systemxsl’'/>
<action name='g’ class=' General Action’ >
<subaction nane="berry" xslt="berry.xsl'/>
</ action>
</ acti onLi st >
<l anguagelLi st >
<l anguage nanme="en">
<di spl ayl t em nanme=" nane’ >Engl i sh</ di spl ayl t en»
</ | anguage>
<l anguage name="fr">
<di spl ayl t em nanme=' nane’ >Fr anai s</ di spl ayl t en»
</ | anguage>
<l anguage name=’es’ >
<di spl ayl t em name=' nane’ >Espaol </ di spl ayl t en>
</ | anguage>
</l anguagelLi st >
<opti onLi st >
<option nane="hi ghl i ght QueryTer ns" val ue="true"/>
<opti on nane="berryBaskets" val ue="true"/>
</ opti onLi st >
</interfaceConfig>

Figure 2: Default interface configuration file

12

Table 3: Example run-time configuration arguments.

a=s&sa=c

a=s&sa=c&sc=XXX

a=s&sa=a

a=s&sa=d

a=s&sa=d&sc=XXX

reconfigures the whole site. Reads in siteConfig.xml, reloads all the
collections. Just part of this can be specified with another argu-
mentss (system subset). The valid values arel | ecti onLi st,

si teList,servicelist,clusterlList.

reconfigures the XXX collection or clustes.s can also be used here,
valid values areret adat aLi st andser vi celLi st .

(re)activate a specific module. Modules are specified using two argu-
ments,st (system module type) argh (system module name). Valid
types arecol | ection,cl uster site.

deactivate a modulest andsn can be used here too. Valid types are
col l ection,cluster, site, servi ce. Modules are removed
from the current configuration, but will reappear if Tomcat is restarte
deactivate a module belonging to the XXX collection or clus¢rand

sn can be used here too. Valid types aex vi ce.

arguments into the URL,; there is no nice web form yet to do this.

The arguments are entered after therary? part of the URL. There are
three types of commands: configure, activate, deactivate. Thespeuified by
a=s&sa=c, a=s&sa=a, anda=s&sa=d, respectively{ is action,sa is subaction). By
default, the requests are sent to the MessageRouter, but they cant be aeol-
lection/cluster by the addition afc=xxx, wherexxx is the name of the collection
or cluster. Table 3 describes the commands and arguments in a bit more detail.

13

2 Using Greenstone3

Once Greenstone3 is installed, the sample collections can be accesseih- The
stallation comes with several example collections, and Section 2.1 describes the
collections and how to use them. Section 2.2 describes how to build new collec-
tions.

2.1 Using a collection

A collection typically consists of a set of documents, which could be text, HTML
word, PDF, images, bibliographic records etc, along with some accessdsgetito
“services”. Typical access methods include searching or browsinddoument
identifiers, and retrieval of content or metadata for those identifiersclsiag in-
volves entering words or phrases and getting back lists of documentsotitairc
those words. The search terms may be restricted to particular fields of the doc
ment.

Browsing involves navigating pre-defined hierarchies of documeritsyiog
links of interest to find documents. The hierarchies may be constructefeneat
metadata fields, for example, alphabetical lists of Titles, or a hierarchylyé&u
classifications. Clicking on a bookshelf icon takes you to a lower level in the
hierarchy, while clicking on a book or page icon takes you to a document.

In the standard interface that comes with Greensténe@llections in a digital
library are presented in the following manner. The 'home’ page of the Jibrar
shows a list of all the public collections in that library. Clicking on a collection
link takes you to the home page for the collection, which we call the collection’s
‘about’ page. The standard page banner for a collection looks somditkerttpat
shown in Figure 3.

Greenstone2
MG Demo HOME HELP PREFERENCES
Browse Text Search

Figure 3: A sample collection page banner

The image at the top left is a link to the collection’s home page. The top
right has buttons to link to the library home page, help and preferences pAf
the available services are arrayed along a navigation bar, along the lafttbm
banner. Clicking on a name accesses that service.

Search type services generally provide a form to fill in, with parameteltsdnc
ing what field or granularity to search, and the query itself. Clicking theckea
button carries out the search, and a list of matching documents will be desblay
Clicking on the icons in the result list takes you to the document itself.

2of course, this is all customizable

14

Once you are looking at a document, clicking the open book icon at the top
of the document, underneath the navigation bar, will take you back to thieeer
page that you accessed the document from.

2.2 Building a collection

There are three ways to get a new collection into Greenstone3. The nmostazo
way is to use the Greenstone Librarian Interface to create a collectionoulf y
have existing collections in a Greenstone2 installation, these can be imported into
Greenstone3. Thirdly, you can use the Perl command line building scriptsliglir

Collections live in thesol 1 ect directory of a site. As described in Section 1.4,
there can be several sites per Greenstone3 installation. The colledbdiriscat
$GSDL3HOME/ si t es/ si t e- nane/ col | ect, where site-name is the name of the site
you want your new collection to belong to.

The following three sections briefly describe how to create a collection using
GLI, how to import a collection from Greenstone2, and how to use command line
building. Once a collection has been built (and is located in the collect direc-
tory), the library server needs to be notified that there is a new collectibis T
can be accomplished in two wayslIf you are the library administrator, you can
restart Tomcat. The library servlet will then be created afresh, and isdbuder
the new collection when it scans the collect directory for the collection list. Al-
ternatively, an activate collection command can be issued to the servlet,thsing
argumentsi=s&sa=aé&st =col | ect i on&n=col | name, wherecol | name should be
replaced with the collection name—this tells the library program to (re)load the
col I nane collection.

2.2.1 Using the Librarian Interface

The Greenstone Librarian Interface (GLI) can be used to create tofisc The
procedure is the same as for Greenstone2, but it works in a GreeBstomext. It
can be started under Windows by selecting Greenstone Librarian bedréam the
Greenstone 3 Digital Library menu in the Program Files section of the Statt.men
On Linux, runant gli from thegreenst one3 directory, or run. /gl i 4gs3. sh
from the$GSDL3SRCHOVE/ gl i directory.

Currently, the GLI works almost exactly the same as for Greensfor@al-
lection configuration is done in a Greenstone2 manner. The main diffeietica
Greenstone3 has different sites and interfaces and servlets, wi@reanstone?2
has a single collect directory, and a single runtime cgi program.

The GLI for Greenstone3 has a couple of new configuration paramesiées
and servlet. It operates within a single site—you can edit, delete, and o®ate
collections within this site. A servlet is also specified for that site—this is used
when previewing a collection. While you are working in one site, you cannot

3and eventually there will also probably be automatic polling for new collections
“Eventually the GLI will be modified to use Greenstone3 XML configuratiors file

15

edit collections from another site. However, you can base a collectiomen o
from another site. To change the working site and/or servlet, go to Brefes-
>Connection in the File menu. By default, the GLI will use siteal site, and
servletl i brary.

Collection building using the GLI will use the Greenstone2 Perl scripts ard plu
gins. At the conclusion of the Greenstone2 build process, a conversiiu will
be run to create the Greenstone3 configuration files. This means that &iatea
ments are no longer 'live'—changing these will require changes to therstene3
configuration files. Clicking the Preview Collection button will re-run the aguni
ration file conversion script. If you change anything on the Format pgaelwill
need to click Preview Collection. Just reloading the collection via a browsler w
not be enough.

Detailed instructions about using the GLI can be found in Sections 3.1 and 3.2
of the Greenstone2 User’'s Guidesg- User - en. pdf). This can be found in your
Greenstone? installation, or in tesSDL3SRCHOVE/ docs/ manual directory if you
have installed Greenstone3 from a distribution.

2.2.2 Importing from Greenstone2

Pre-built Greenstone2 collections can also be used in Greenstone8olldation
folder should be copied to the collect directory of the site it is to appear ia (or
symbolic link may be used if possible). The Greenstone3 run time systemegsquir
different configuration files for a collection, so you need to run a c@iwe script.

All this does is create the newbl | ecti onConfig. xm andbuil dConfi g. xm
from the oldcol | ect . cf g andbui | d. cf g files. It does not change the collection
in any way, so it can still be used by Greenstone2 software.

The conversion script isonvert col | fromgs2. pl . To run it, make sure you
have rursour ce set up. bash (orset up in Windows) in thesGSDL3SRCHOVE/ gs2bui | d
directory (as well as running the standak®- set up command). Then you need
to specify the path to the collect directory and the collection name as paraneeters
the conversion script. For example,

convert_coll _fromgs2.pl -collectdir
$GSDL3HOVE/ sites/l ocal site/collect gs2ngdeno

The script attempts to create Greenstone3 format statements from the oid Gree
stone2 ones. The conversion may not always work properly, so ifdtecton
looks a bit strange under Greenstone3, you should check the fornemnstas.
Format statements are described in Section 2.4.

Once again, to have the collection recognized by the library servlet, you ca
either restart Tomcat, or load it dynamically.

2.2.3 Using command line building

This is the same procedure as for Greenstone2 command line building, with the
addition of a final step to create the Greenstone3 configuration files. dsie b

16

steps are (for a new collection called testcol):
Linux:

cd greenstone3
source gs3-setup.sh

cd gs2build
sour ce setup. bash
cd ../

mkcol . pl -collectdir $GSDL3HOVE/ sites/| ocal site/collect testcol

put source docunents and netadata into
$GSDL3HOVE/ sites/ | ocal site/coll ect/testcol/inport

edit $GSDL3HOWVE/ sites/|ocal site/collect/testcol/etc/collect.cfg as
appropriate

inport.pl -collectdir $GSDL3HOVE/ sites/|ocal site/collect testco

buil dcol . pl -collectdir $GSDL3HOVE/ sites/|ocal site/collect testco

renane the $GSDL3HOMWE/ sites/| ocal site/collect/testcol/building
directory to index

convert _coll _fromgs2.pl -collectdir $GSDL3HOVE/ sites/|ocal sitel/collect
test col

%

Windows:

cd greenstone3

gs3-setup

cd gs2build

setup

cd ..

perl -S nkcol.pl -collectdir %SDL3HOVE% sites\|ocalsite\collect testco

put source docunents and netadata into
Y%SSDL3HOVE% si t es\ | ocal site\col |l ect\testcol\inport

edit %SDL3HOVE% sites\local site\collect\testcol\etc\collect.cfg as
appropriate

perl -S inmport.pl -collectdir %SDL3HOVE% sites\|ocal site\collect testco

perl -S buildcol.pl -collectdir %SDL3HOVE% sites\local site\collect testco

rename the %SDL3HOVE% sites\|ocal site\collect\testcol\building directory
to index

perl -S convert_coll_fromgs2.pl -collectdir
%SDL3HOVE% sites\ | ocal site\col l ect testco

Once the build process is complete, Tomcat should be prompted to reload the
collection—either by restarting the server, or by sending an activate totlec
command to the library servlet.

Metadata for documents can be added usingdat a. xni files. Anet adat a. xn
file has aroot element &hi r ect or yMet adat a>. This encloses a seriesdfi | eSet >
items. Neither of these tags has any attributes. Eacheset > item includes two
parts: firstly, one or moreFi | eNarre> tags, each of which encloses a regular ex-
pression to identify the files which are to be assigned the metadata. Only files in
the same directory as thet adat a. xm file, or in one of its child directories, will
be selected. The filename tag encloses the regular expression as text, e.g.:

<Fi | eNane>exanpl e</ Fi | eNane>

17

This would match any file containing the text 'example’ in its name. The sec-
ond part of thesFi | eSet > item is a<Descri pti on>item. The<Descri pti on>tag
has no attributes, but encloses one or mong adat a> tags. EachMet adat a>
tag contains one metadata item, i.e. a label to describe the metadata and a corre-
sponding value. Themet adat a> tag has one compulsory attributaianme’ . This
attribute gives the metadata label to add to the document. Eaghdat a> tag
also has an optional attributerode’ . If this attribute is set toaccunul ate’ then
the value is added to the document, and any existing values for that metadata item
are retained. If the attribute is set'teet* or is omitted, then any existing value of
the metadata item will be deleted.

Figure 4 shows an example metadata.xml file. Here, only one file pattern is
found in each file set. However, thescri pt i on tag contains a number of separate
metadata items. Note that thiet | e metadata does not have tihgle=accunul at e
attribute. This means that when this title is assigned to a document, any existing
Ti t1 e information will be lost.

2.3 Collection configuration files

Each collection has two, or possibly three, Greenstone3 configuratien file
col | ectionConfig. xm ,buildConfig.xn ,andoptionall\tol | ectionlnit.xn,
that give metadata, display and other information for the collection. Currently
col | ectionConfig.xm andbuil dConfig.xm are generated fromol | ect. cfg
andbui | d. cfg. At some stage, the collection building process and the Librar-
ian Interface will be modified to use these files directlyol | ect . cf g and/or
col | ectionConfig.xm includes user-defined presentation metadata for the col-
lection, such as its name and tAkout this collection text; gives formatting infor-
mation for the collection display; and also gives instructions on how the colfectio
is to be built.bui I d. cf g and/orbui | dConfi g. xmi are produced by the build-time
process and include any metadata that can be determined automatically. It also
includes configuration information for any ServiceRacks needed byolfexton.

All the configuration files should be encoded using UTF-8.

The format ofcol | ect . cf g andbui | d. cf g are not discussed here. Please see
the Greenstone2 manuals for more information regarding these files.

2.3.1 collectionlnit.xml

This optional file is only used for non-standard, customized collectionpetiifies
the class name of the non-standard collection class. The only syntaxisdtiar
class name:

<collectionlnit class="XMCollection"/>

Section 4.4 describes an example collection where this file is used. Depending
on the type of collection that this is used for, one or both of the other coatign
files may not be needed.

18

<?xm version="1. 0" encodi ng="UTF-8"?>
<! DOCTYPE Di rect oryMet adat a SYSTEM "http://greenstone. org/dtd/ DirectoryMetadat a
/1.0/DirectoryMetadata. dtd">
<Di r ect or yMet adat a>
<Fi | eSet >
<Fi | eName>ec160e</ Fi | eNanme>
<Descri pti on>
<Met adata nanme="Titl e">The Courier - No.160 - Nov - Dec 1996 -
Dossier Habitat - Country reports: Fiji , Tonga (ecl60e)</Met adat a>
<Met adat a node="accumrul ate" nane="Language" >Engl i sh</ Met adat a>
<Met adat a node="accurnul ate" nane="Subj ect">Settl| enents and housi ng:
general works incl. |low cost housing, planning techniques, surveying,
et c. </ Met adat a>
<Met adat a node="accurul at e" nanme="Subj ect">The Courier ACP 1990 - 1996
Africa- Cari bbean-Paci fic - European Uni on</ Met adat a>
<Met adat a npde="accumul ate" name="0Organi zati on">EC Couri er </ Met adat a>
<Met adat a node="accunul ate" nane="AZLi st">T. 1</ Met adat a>
</ Descri pti on>
</ Fi |l eSet >
<Fi | eSet >
<Fi | eName>b22bue</ Fi | eNanme>
<Descri pti on>
<Metadata nane="Titl e">Butterfly Farm ng in Papua New Gui nea
(b22bue) </ Met adat a>
<Met adat a npde="accumrul ate" nanme="Language" >Engl i sh</ Met adat a>
<Met adat a nobde="accumrul ate" nane="Subject">C her animals (mcro-
livestock, little known aninmals, silkwornms, reptiles, frogs,
snails, game, etc.)</ Mt adata>
<Met adat a npbde="accumrul ate" nane="0Or gani zati on" >BOSTI D</ Met adat a>
<Met adat a node="accurnul ate" nane="AZLi st">T. 1</ Met adat a>
<Met adat a node="accunul ate" nanme="Keyword">start a butterfly farm
</ Met adat a>
</ Descri pti on>
</ Fi |l eSet >
</ Di r ect or yMet adat a>

Figure 4: Sample metadata.xml file

19

2.3.2 collectionConfig.xml

The collection configuration file is where the collection designer (e.g. aikdmar
decides what form the collection should take. So far this file only includes the
presentation aspects needed by the run-time system. Instructions fottioollec
building have yet to be defined. Presentation aspects include collectionatzetad
such as title and description, display text for indexes, and format statefioents
search results, classifiers etc. The format@fi ecti onConfi g. xm is still under
consideration. However, Figure 5 shows the parts of it that have kefered so

far.

Display elements for a collection can be entered in any languagetatge en’
attributes to specify which language they are in.

The<net adat aLi st > element specifies some collection metadata, such as cre-
ator. The<di spl ayl t enLi st > specifies some language dependent information that
is used for collection display, such as collection name and short descriptiese
di spl ayl t emelements can be specified in different languages.

The<sear ch> element provides some display and formatting information for
the search indexes, while ther owse> element concerns classifiers, and<thiespl ay>
element looks at document display.

Inside the<sear ch> and <br owse> elements,<di spl ayl t em> elements are
used to provide titles for the indexes or classifiers, whiler mat > elements pro-
vide formatting instructions, typically for a document or classifier node in afist
results. Placing thef or mat > instructions at the top level in thezar ch or br owse
element will apply the format to all the indexes or classifiers, while placingidéns
an individuali ndex orcl assi fi er element will restrict that formatting instruction
to that item.

The <di spl ay> element contains optional formatting information for the dis-
play of documents. Templates that can be specified here ingtudeent Headi ng
andDocunent Cont ent . Other formatting options may also be specified here, such
as whether to display a table of contents and/or cover image for the documents

Format elements are described in Section 2.4.

An optional <r epl aceLi st > element can be included at the top level. This
contains a list of strings and their replacements. This is particularly useful f

Greenstone?2 collections that use macros.
The format is like the following:

<repl acelLi st >

<repl ace scope="text’ macro="xxx" text="yyy"/>

<repl ace scope=' metadata’ macro="xxx" bundl e="yyy" key="zzz"/>
<repl ace scope="all’ macro="xxx' netadata="yyy'/>

</repl acelLi st >

Scope determines on what text the replacements are carrietk@utnet adat a,
andal | (both text and metadata). An empty scope attribute is equivalent to scope=all.
Each replace type can be used with all scope values. Replacing uaissSting.replaceAll’
functionality, so macro and replacement text are actually regular expmesg he

20

<col | ecti onConfig xm ns: gsf="http://ww. greenst one. or g/ gr eenst one3/
schema/ Confi gFormat"” xm ns: xslt="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n{' >
<net adat aLi st >
<nmet adat a name="cr eat or" >gr eenst one@s. wai kat o. ac. nz</ net adat a>
<nmet adat a nanme="public">true</ nmet adat a>
</ net adat aLi st >
<di spl ayl t enli st >
<di spl ayl t em nanme=' nane’ | ang="en’ >Greenst one3 MG denp col | ecti on</di spl ayl ten>
<di spl ayl t em nanme=' description’ |lang="en’ >This is a denobnstration
collection for the Geenstone3 digital library software.</displayltenr
<di spl ayl tem nanme="i con’ | ang='en’ >gs3ngdeno. gi f </ di spl ayl ten®
<di spl ayl tem nanme="smal | i con’ | ang="en’ >gs3ngdeno_sm gi f </ di spl ayl ten>
</ di spl ayl t enLi st >
<sear ch>
<i ndex nanme="ste">
<di spl ayl t em nanme=" nane’ | ang="en">chapt er s</ di spl ayl t emr>
<di spl ayl t em nanme=' nane’ | ang="fr">chapitres</di splayltenr
<di spl ayl t em nane=" nane’ |ang="es">captul os</di spl ayl t en>
</i ndex>
[... nore indexes ...]
<f or mat >
<gsf:tenpl ate natch="docunent Node"><td valign="top’ >
<gsf:link><gsf:icon/></gsf:link></td><td><gsf:metadata nane="Title />
</td></gsf:tenpl ate>
</ f or mat >
</ search>
<br owse>
<cl assifier nane="CL1" horizontal At Top="true’ >
<di spl ayl t em name=' nane’ | ang="en’ >Titl es</di spl ayl ten>
</classifier>
[... nmore classifiers ...]
<cl assi fier nane="CL4">
<di spl ayl t em nane=" nane’ | ang='en’ >HowTo</di spl ayl ten
<f or mat >
<gsf:tenpl ate nat ch="docunent Node" >

<gsf:link><gsf: metadata nane=" Keyword />
</ gsf:link></gsf:tenpl ate>
</ f or mat >
</classifier>
</ br owse>
<di spl ay>
<f or mat >
<gsf:option nane="coverl mages" val ue="fal se"/>
<gsf:option nane="docunent TOC' val ue="fal se"/>
</ for mat >
</ di spl ay>
</ col | ecti onConfi g>

Figure 5: Sample collectionConfig.xml file

21

first example is a straight textual replacement. The second example us@safic
lookups. xxx will be replaced with the (language-dependent) valuedpizkz in
resource bundle yyy. The third example uses metadata: xxx will be rejigydhe
value of the yyy metadata for that document.

Appendix D.2 gives some examples that have been used for Greenstune2
lections.

2.3.3 buildConfig.xml

The filebui | dConfi g. xm is produced by the collection building process. Gener-
ally it is not necessary to look at this file, but it can be useful in determinimatw
went wrong if the collection doesn't appear quite the way it was planned.

It contains metadata and other information about the collection that can be de-
termined automatically, such as the number of documents in the collection. It also
includes a list ofser vi ceRack classes that are required to provide the services
that have been built into the collection. The serviceRack names are Jasa<la
that are loaded dynamically at runtime. Any information inside the serviceRack
element is specific to that service—there is no set format. Figure 6 shoes an
ample. This configuration file specifies that the collection should load up-3 Ser
viceRacks:GS2Br owse, GS2MGPPRet ri eve and GS2MaPPSear ch. The contents of
each<ser vi ceRack> element are passed to the appropriate ServiceRack objects
for configuration. Thesol | ecti onConfig. xm file content is also passed to the
ServiceRack objects at configure time—th@ mat anddi spl ayl t em informa-
tion is used directly from theol | ecti onConfi g. xn file rather than added into
bui I dConfi g. xm during building. This enables formatting and metadata changes
incol I ectionConfig.xn to take effect in the collection without rebuilding being
necessary. However, as these files are cached, the collection ndmteetoaded
for the changes to appear in the library.

2.4 Formatting the collection
2.4.1 Modifying the “format” xslt templates

Part of collection design involves deciding how the collection should lookeGr
stone3 has a default 'look’ for a collection, so this is optional. Howeverd#dfault
may not suit the purposes of some collections, so many parts to the look bf a co
lection can be determined by the collection designer.

In standard Greenstone3, the library is served to a web browser bylatse
and the HTML is generated using XSLT. XSLT templates are used to format all
the parts of the pages. These templates can be overridden by including tthem in
col | ectionConfig.xm file. Some commonly overridden templates are those for
formatting lists: search results list, classifier browsing hierarchies, ammhfts of
the document display.

Real XSLT templates for formatting search results or classifier lists are quite
complicated, and not at all easy for a new user to write. For example, ltbeifog

22

<bui | dConfi g>
<net adat aLi st >
<net adat a nane="nunDocs" >11</ net adat a>
<net adat a name="bui | dType" >ngpp</ net adat a>
</ nmet adat aLi st >
<servi ceRackLi st >
<servi ceRack nane="GS2Br owse" >
<i ndexSt em nane="gs2ngppdeno"/ >
<cl assifierlList>
<cl assi fier nanme="CL1" content="Title"/>
<cl assi fi er nane="CL2" content="Subject" />
<cl assifier nane="CL3" content="Organi zation"
<cl assi fi er nane="CL4" content="Howt o" />
</classifierlList>
</ servi ceRack>
<servi ceRack nane="GS2M3PPRetri eve" >
<i ndexSt em nane="gs2ngppdenn"/ >
<def aul t Level nane="Sec" />
</ servi ceRack>
<servi ceRack nane="GS2M3PPSear ch" >
<i ndexSt em nane="gs2ngppdenn"/ >
<def aul t Level nane="Sec" />
<l evel Li st>
<l evel nane="Sec" />
<l evel nanme="Doc" />
</l evel Li st >
<fieldList>
<field shortnane="27ZzZ" nane="allfields" />
<field shortname="TX" nane="text" />
<field shortname="DL" nanme="dls.Title" />
<field shortnane="DS" nanme="dl s. Subj ect" />
<field shortname="DO" name="dls. Organi zati on"
</fieldList>
<sear chTypelLi st >
<sear chType nane="form' />
<sear chType nane="plain" />
</ sear chTypelLi st >
<i ndexOpti onLi st >
<i ndexOpti on nane="stem ndexes" val ue="3"/>
<i ndexOpti on nane="maxnumneric" val ue="4"/>
</i ndexQOpti onLi st >
<def aul tI ndex nane="idx" />
<i ndexLi st >
<i ndex nane="idx" />
</ i ndexLi st >
</ servi ceRack>
</ servi ceRackLi st >
</ bui | dConfi g>

/>

/>

Figure 6: Sample buildConfig.xml file (gs2mgppdemo collection)

23

is a sample template for formatting a classifier list, to show Keyword metadata as
a link to the document.

<xsl :tenpl at e mat ch="docunment Node" priority="2"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf' >
<xsl : par am name="col | Nane"/ >
<td><a href="{$library_name}?a=d&anp; c={ $col | Nane} &anp;
d={ @nodel D} &np; dt ={ @ocType}" ><xsl : val ue- of
sel ect =" et adat aLi st/ net adat a[@ane=" Keyword'] "/ >
</td>
</ xsl : tenpl at e>

To write this, the user would need to know that:

e the variablesl i br ar y_nane exists,

e the collection name is passed in as a parameter cadlddNane

e metadata for a document is found ikt adat aLi st > and that its form is
<net adat a nane="Keywor d" >t he val ue</ net adat a>

¢ the arguments needed for the link to the documentaarea, c, d, a,
dt.

We can use XSLT to transform XML into XSLT. Greenstone3 provides a sim-
plified set of formatting commands, written in XML, which will be transformed
into proper XSLT. The user specifies<gsf: t enpl at e> for what they want to
format—these typically matciiocurment Node or cl assi f i er Node (for a node in a
classification hierarchy).

The template above can be represented as:

<gsf:tenpl ate mat ch=" docunent Node’ >
<t d><gsf: | i nk><gsf: netadata nane=' Keyword’' / ></gsf:|link></td>
</ gsf:tenpl ate>

Table 4 shows the set ofysf’ (Greenstone Format) elements. If you have
come from a Greenstone2 background, Appendix D.1 shows Greef2stormat
elements and their equivalents in Greenstone3 ..

The <gsf : net adat a> elements are used to output metadata values. The sim-
plest case iggsf : net adat a nane="Ti t| e’ / >—this outputs all the Title metadata
values for the current document or section. Namespaces are impastanifithe
Title metadata is in the Dublin Core (dc) namespace, then the element should look
like <gsf : net adat a name='dc. Titl e’ />. There are three other attributes for this
element. By default, more than one value for the selected metadata is returned,
where multiple exist. The attributeos is used when a particular value for the
selected metadata is requested (which can be the first, last or nth valueh- Fo
stance, one document may fall into several classification categoriethenedore
may have multiple Subject metadata values. When all are returned, the multiple
values are separated by commas by default. sidpar at or attribute is used to
change the separating string. For example, adskpgr at or=": * to the element

24

Table 4: Format elements for GSF format language

Element

Description

<gsf:text/>

The document’s text

<gsf:link>. ..</gsf:link>
<gsf:link type="docunent’>. ..
</ gsf:link>

<gsf:link type='classifier’ > ..

The HTML link to the document itself
Same as above

A link to a classification node (use in classifierNode

</ gsf:link> templates)

<gsf:link type='source’>. .. The HTML link to the original file—set for doc-

</ gsf:link> uments that have been converted from e.g. Word,
PDF, PS

<gsf:icon/ > An appropriate icon

<gsf:icon type= docunent’ /> same as above

<gsf:icon type='classifier'/> bookshelf icon for classification nodes

<gsf:icon type='source’ /> An appropriate icon for the original file e.g. Word,
PDF icon

<gsf:metadata name="Title' /> All the values of a metadata element for the current

<gsf:nmetadata nanme="Titl e’
sel ect =" sel ect-type’

[separator="y’ prefix="p
suffix="s" pos="first|last|n]/>

<gsf:netadata nane="Title >

<separ at or >y</ separ at or >
<prefix>p</ prefix>

<suf fix>s</suffix> </gsf:netadata>
<gsf: nmet adat a name=' Dat e’

format =" f ormat Date’ / >

document or section, in this case, Title

A more extended selection of metadata values. The
select field can be one of those shown in Table 5.
There are some optional attributes: separator gives a
String that will be used to separate the fields (default
is “,), prefix and suffix give strings that will be
output before and after each field, and pos can be
set to return either the first, last or nth value for that
metadata at each section.

separator, prefix and suffix can all be specified as el-
ements instead of attributes. This format allows for
HTML tags to be used. e.gbr / > as a separator.

The value of a metadata element for the current doc-
ument, formatted in some way. Current formatting
options available are listed in Table 6.

<gsf: choose- net adat a>
<gsf:net adata nane="netaA />
<gsf: nmetadata nanme='netaB' />
<gsf: netadata nane="nmetaC />
</ gsf: choose- net adat a>

A choice of metadata. Will select the first existing
one. the metadata elements can have the select, sep-
arator and pos attributes like normal.

<gsf:switch preprocess=

" preprocess-type’ >

<gsf:netadata nane="Title' />
<gsf:when test="test-type’

test -val ue=’ xxx’ >. .. </ gsf: when>
<gsf:when test="test-type’

test-val ue="yyy’ >...</gsf:when>
<gsf: ot herw se>...</gsf: ot herw se>
</ gsf:swtch>

switch on the value of a particular metadata - the
metadata is specified in gsf:metadata, has the same
attributes as normal.

25

Table 5: Select types for metadata format elements
Select Type Description

parent The immediate parent section
ancestors All the parents back to the root (topmost) section
root The root or topmost section

Table 6: String processing option, for preprocess in gsf.switch, andafoin
gsf:metadata

Process Type Description

toUpper Make the value upper case

toLower Make the value lower case

tidyWhitespace Replace multiple whitespace characters with a single space
stripWhitespace Removes all whitespace characters

cgiSafe Make value safe to be a cgi argument

formatDate turns '20040201’ into '01 February 2004’ in a languageeddent manner

formatLanguage turns ’en’ into 'English’ in a language dependenin@an
formatBigNumber

will separate all values by a colon and a space. Instead of retrievin@laks
for a piece of metadata, addipgs='first’ to the<gsf: net adat a> element will
retrieve the first value.

Sometimes you may want to display metadata values for sections other than the
current one. For example, in the mgppdemo collection, in a search list wiaydisp
the Titles of all the enclosing sections, followed by the Title of the currenisec
all separated by semi-colons. The display ends up looking somethingréikeing
snails 2; Sarting out; Selecting your snails whereSelecting your snailsis the Title
of the section in the results list, akdrming snails 2 andSarting out are the Titles
of the enclosing sections. Thel ect attribute is used to display metadata for
sections other than the current one. Table 5 shows the options availaltesfo
attribute. Thesepar at or attribute is used here also, to specify the separating text.

To get the previous metadata, the format statement would have the following
init:
<gsf:netadata nane="Title' select="ancestors’ separator='; '/>;

<gsf:netadata name="Title />

The<gsf : choose- net adat a> element selects the first available metadata value
from the list of options.

<gsf: choose- net adat a>
<gsf:netadata nane="dc.Title' />
<gsf:metadata name="dls. Title' />
<gsf:netadata nane="Title' />

</ gsf: choose- net adat a>

This will display dc.Title if available, otherwise it will use dis.Title if available,
otherwise it will use the Title metadata. If there are no values for any of these
metadata elements, then nothing will be displayed.

26

Table 7: Formatting options

option name values description

coverlmages true, false whether or not to display cover images
for documents

documentTOC true, false whether or not to display the table of
contents for the document

The<gsf : swi t ch> element allows different formatting depending on the value
of a specified metadata element. For example, the following switch statement could
be used to display a different icon for each document in a list dependimdhizh
organization it came from.

<gsf:switch preprocess="tolLower;stripSpace’ >
<gsf: met adat a name=' Organi zation' />
<gsf:when test="equals’ test-val ue="bostid >
<l-- output BOSTID imge --></gsf:when>
<gsf:when test="equal s’ test-val ue="worl dbank’ >
<l-- output world bank inmage --></gsf:when>
<gsf:otherw se><!-- output default inmage--></gsf:otherw se>
</ gsf:swtch>

Preprocessing of the metadata value is optional. The preprocess tgpietear
in Table 6. These operations are carried out on the value of the selectadatee
before the test is carried out. Multiple processing types can be spesciigarated
by ; and they will be applied in the order specified (from left to right).

Each option specifies a test and a test value. Test values are just teid. Te
includestartsWth, cont ai ns, exi sts, equal s, endsWth. Exists doesn’t need
a test value. Having an otherwise option ensures that something will beyaidpla
even when none of the tests match.

If none of the gsf elements meets your needs for formatting, XSLT can-be en
tered directly into the format element, giving the collection designer full flexibility
over how the collection appears.

The collection specific templates are added into the configuratiarofileect i onConfi g. xmi .
Any templates found in the XSLT files can be overridden. The importanttpart
adding templates into the configuration file is determining where to put them. For-
matting templates cannot go just anywhere—there are standard placesrfor th
Figure 7 shows the positions that templates can occur.

There are also formatting instructions that are not templates but are options.
These are described in Table 7. They are entered into the configurdgidikdi
<gsf:option nane=" coverl nmages’ value="false' />

Note, format templates are added into the XSLT files before transforming,
while the options are added into the page source, and used in tests in the XSLT

27

<col | ecti onConfi g>
<met adat aLi st/ >
<di spl ayl tenli st/ >
<sear ch>
<format> <!--Put here tenplates related to searching and
the query page. The common one is the document Node
tenplate -->
<gsf:tenpl ate mat ch=" docunent Node’ >. .. </ gsf:tenpl at e>

</ formt >
</ sear ch>
<br owse>
<cl assifier name="xx'>
<format><!-- put here tenplates related to formating a

particul ar classifier page. Commobn ones are docunent Node
and cl assi fi erNode tenpl ates-->
<gsf:tenpl ate natch="docunent Node’ >. .. </ gsf:tenpl ate>
<gsf:tenpl ate match="cl assifierNode' >...</gsf:tenpl ate>
<gsf:tenpl ate match="cl assi fi er Node’ node=' hori zontal ' >..
</ gsf:tenpl ate>
</ format >
</classifier>
<classifier>. ..</classifier>
<format><!-- formatting for all the classifiers. these wll
be overridden by any classifier specific formatting
i nstructions --></fornat>
</ br owse>
<di spl ay>
<format ><!-- here goes any formatting relating to the display
of the docunments. These are generally naned tenpl ates
and format options -->
<gsf:tenpl ate name=" docunent Content’ >...</gsf:tenpl ate>
<gsf:option nane=" TOC val ue="true’'/>
</ f or mat >
</ di spl ay>
</ col | ecti onConfi g>

Figure 7: Places for format statements

28

2.4.2 Changing the service text strings

Each collection has a set of services which are the access points fofdimation

in the collection. Each service has a set of text strings which are usedptaydis

it. These include name, description, the text on the submit button, and naches an
descriptions of all the parameters to the service.

These text strings are found.ipr operti es files, IN$GSDL3HOVE/ VEB- | NF/ ¢l asses.
The names of the files are based on class names. Subclasses can defmerth
properties, or can use their parent class ones. For examigle,act Sear ch de-
fines strings for th@ext Quer y service, inbst r act Sear ch. properti es. GS2MGSear ch
just uses these default ones, so doesn’t need its own properties file.

A patrticular collection can override the properties for any service. famgle,
if a collection uses thes2mssear ch service rack (look in théui | dConfi g. xmi
file for a list of service racks used), and the collection builder wants toginghe
text associated with this service, they can p@samssear ch. properti es file in
the resources directory of the collection. After a reconfigure of theaalle, this
will be used in preference to the one in the default resources directory.

2.5 Customizing the interface

Format statements in the collection configuration files provide a way to change
small parts of the collection display. For large scale customizations to a collection
or ones that apply to a site as a whole, a second mechanism is available. The
interface is defined by a set of XSLT files that transform the page dataiFtaL.
Any of these files can be overridden to provide specialized display, de &rs
collection basis.

The first section looks at customizing the existing interface, while the second
section looks at defining a whole new interface. The last section desdriveto
add a new language translation of an interface.

2.5.1 Modifying an existing interface

Most of an interface is defined by XSLT files, which are storeddaDL3HOVE/ -

i nterfaces/interface-nane/transform These can be changed and the changes
will take effect straight away. If changes only apply to certain collectmrsites,

not everything that uses the interface, you can override some of thbyilastting

new ones in a different place. XSLT files are looked for in the followindeor
collection, site, interface, default interface. (This currently only apfiesites,

and therefore collections, that reside in the same Greenstone installatioa as th
interface.)

Sites and collections can have a transform directory, which is wherenizeio
XSLT files should go. Any XSLT files in here will be used in preference ® th
interface files when using this collection. For example, if you want to have a
completely different layout for the about page of a collection, you carapmew

29

about . xs!| file into the collection’s r ansf or mdirectory, and this will be used in-
stead. This is what we do for the Gutenberg sample collection.

This also applies to files that are included from other XSLT files. For example
thequery. xsI for the query pages includes a file callear yt ool s. xsl . To have
a particular site show a different query interface either of these files meg to
be modified. Creating a new version of either of these and putting it in the site
t r ansf or mdirectory will work. Either the newjuery. xsI will include the default
queryt ool s. xsl , or the defaultjuery. xsI will include the newquer yt ool s. xsl .
Thexsl : i ncl ude directives are preprocessed by the Java code and full paths added
based on availability of the files, so that the correct one is used.

Note that you cannot include a file with the same name as the including file.
For examplequery. xsl cannot includeguery. xsl (it is tempting to want to do
this if you just want to change one template for a particular file, and then iaclud
the default. but you cant).

You can add the argumesitxm to any URL and you wil be returned the XML
before transformation by a stylesheet. This shows you the XML pageeolir
can be useful when you are trying to write some new XSLT statements.

2.5.2 Defining a new interface

A new interface may be needed if different instantiations of the libraryirequ
different interfaces, or different developers want their own loak f@el. Creating
a new interface will allow modifications to be made while leaving the original one
intact.

A new interface needs a directory $GSDL3HOVE/ i nt er f aces, the name of
this directory becomes the interface name. Inside, it neeglges andt r ansf orm
directories, and annt er f aceConfi g. xn file. TheinterfaceConfig.xm file
may specify a base interface, in which case the new interface only neddgre
XSLT for the parts that are different. Otherwise, it will need a full seX<
files.

To use a new interface, ti$&SDL3HOVE/ VEB- | NF/ web. xni file must be edited:
either change the interface that a current servlet instance is usindd anather
servlet instantiation to the file (see Section 1.4 or Appendix B). The Tomoadrse
must be restarted for this to take effect.

2.5.3 Changing the interface language

The interface language can be changed by going to the preferenges qad
choosing a language from the list, which includes all languages into which the
interface has been translated.

It is easy to add a new interface language to Greenstone . Languagfcspe
text strings are separated out from the rest of the system to allow fpireaspo-
ration of new languages. These text strings are contained in Javacednundle
properties files. These are plain text files consisting of key-value pag@ted in

30

$GSDL3HOVE/ VEB- | NF/ ¢l asses. Each interface has one named er f ace_nane. properti es
(where nane’ is the interface name, for exampie;g er f ace_def aul t . properti es,
orinterface_gs2. properties). Each service class has one with the same name
as the class (e.gGs2Sear ch. properties). To add another language all of the
base. properties files must be translated. The translated files keep the same
names, but with a language extension added. For example, a Fren@nwefrs
i nterface_defaul t.propertieswouldbenamednterface.default_fr.properties.
Keys will be looked up in the properties file closest to the specified language
For example, if languagier .ca was specified (French language, country Canada),
and the default locale wash_GB, Java would look at properties files in the fol-
lowing order, until it found the keyxxx_fr _CA. properties, XXXfr. properties,
XXX_en_GB. properti es, thenxxx_en. properti es, and finally the defaubtxx. properti es.
These new files are available straight away—to use the new language.gadd
I =fr to the arguments in the URL. To get Greenstone to add it in to the list of
languages on the preferences page, an entry needs to be added Iatgtleyes
listin thei nterfaceConfig. xn file (see Section 1.6.2). Modification of this file
requires a restart of the Tomcat server for the changes to be reedgniz

31

Library
Serviet

Process ot
Action mportCollectiyn
Service GS2Construct
/ BuildCollectiof
Receptionist, Browse Seryiee~
Action / ActivateCollectly
\ Service
Document CgflectionFormaion
Action ServiceCluste
Query
Action

n

=
AddDocumen
Service
Page \ /
Action
PhindPhraseBrowse
T ———————— " (MessageRouter

PhindApplet

Service
lassifierBrowye

o demo / ‘

GS2MGPPSearch Service
Collection e
letadataRetrieye \
Service
ourceRevie e
Service lassifierBrowye
Service

fao GS2Browse
Collection
Gy
ervice
AN
GS2MGPPRetrieve TextQuery GS2MGPPRetrieve
Service

lesourceRetrieye
GS2Browse
GS2MGPPSearch

Figure 8: A simple stand-alone site.

3 Developing Greenstone3: Run-time system

[TODO: rewrite this section

runtime object structure diagram. describe the modules.
class hierarchy,

directory structure and where everything lives

message format.

overall description of message passing sequence.
configuration process - start up and runtime

page generation

]

3.1 Overview of modules??

A Greenstone3 ’library’ system consists of many components: MessageR
Receptionist, Actions, Collections, ServiceRacks etc. Figure 8 showsHeywit
together in a stand-alone system. The top left part is concerned with digplay
the data, while the bottom right part is the collection data serving part. The two
sides communicate through the MessageRouter. There is a one-to-oesp00F
dence between modules and Java classes, with the exception of sefmiamsd-
ing and/or run-time efficiency reasons, several Service modules masobpegl
together into one ServiceRack class.

MessageRouter: this is the central module for a site. It controls the site, loading
up all the collections, clusters, communicators needed. All messages passth
the MessageRouter. Communication between remote sites is always donerbetwe

32

MessageRouters, one for each site.

Collection and ServiceCluster: these are very similar, and group a set of ser-
vices into a conceptual group.. They both provide some metadata aboutlthe ¢
lection/cluster, and a list of services. The services are provided hyc8Back
objects that the collection/cluster loads up. A Collection is a specific type ef Ser
viceCluster. A ServiceCluster groups services that are related domadigpe.g. all
the building services may be part of a cluster. What is part of a clusteeGfsul
by the site configuration file. A Collection’s services are grouped by tttettiat
they all operate on some common data—the documents in the collection. Func-
tionally Collection and ServiceCluster are very similar, but conceptually,tand
the user, they are quite different.

Service: these provide the core functionality of the system e.g. searching, re-
trieving documents, building collections etc. One or more may be grouped into a
single Java class (ServiceRack) for code reuse, or to avoid instantiaéregame
objects several times. For example, MGPP searching services all neagktthie
index loaded into memory.

Communicator/Server: these facilitate communication between remote mod-
ules. For example, if you want MR1 to talk to MR2, you need a Communicator-
Server pair. The Server sits on top of MR2, and MR1 talks to the Communicator
Each communication type needs a new pair. So far we have only been @iy S
so we have a SOAPCommunicator and a SOAPServer.

Receptionist: this is the point of contact for the 'front end’. Its core function-
ality involves routing requests to the Actions, but it may do more than that. For
example, a Receptionist may: modify the request in some way before sétiting
the appropriate Action; add some data to the page responses that is comron to a
pages; transform the response into another form using XSLT. Tharbierarchy
of different Receptionist types, which is described in Section 3.9.3.

Actions: these do the job of creating the 'pages’. There is a different action for
each type of page, for example PageAction handles semi-static pagegAQue
tion handles queries, DocumentAction displays documents. They know a little bit
about specific service types. Based on the 'CGI’ arguments passethenigthey
construct requests for the system, and put together the responseatmtordthe
page. This data is returned to the Receptionist, which may transform it to HTML
The various actions are described in more detail in Section 3.9.

3.2 Start up configuration

We use the Tomcat web server, which operates either stand-alone innaoisst
or in conjunction with the Apache web server. The Greenstone Librariete
class is loaded by Tomcat and the servletist () method is called. Each time a
get/ put/ post (etc.) isused, anew thread is started amekt () / doPut () / doPost ()
(etc.) is called.

Thei ni t () method creates a new Receptionist and a new MessageRouter. De-
fault classes (DefaultReceptionist, MessageRouter) are used wibetasses have

33

been specified in the servlet initiation parameters (see Section 1.4). Trwodpp

ate system variables are set for each object (interface name, site naherel
thenconfigure() is called on both. The MessageRouter handle is passed to the
Receptionist. The servlet then communicates only with the Receptionist, not with
the MessageRouter.

The Receptionist reads in that er f aceConfi g. xm file (see Section 1.6.2),
and loads up all the different Action classes. Other Actions may be loaded o
the fly as needed. Actions are added to a map, with shortnames for keyke Eg
QueryAction is added with key 'g’. The Actions are passed the MessageRref-
erence too. If the Receptionist is a TransformingReceptionist, a mappivwe dre
shortnames and XSLT file names is also created.

The MessageRouter reads in its site configurationsfiteeConfi g. xm (see
Section 1.6.1). It creates a module map that maps names to objects. This is used
for routing the messages. It also keeps small chunks of XML—serviteldkec-
tionList, clusterList and siteList. These are part of what get returnegkipanse to
a describe request (see Section 3.4.).

Each ServiceRack specified in the configuration file is created, then duerie
for its list of services. Each service name is added to the map, pointing to the
ServiceRack object. Each service is also added to the serviceList. Aftestdige,
ServiceRacks are transparent to the system, and each service isaeateeparate
module.

ServiceClusters are created and passed<tleevi ced ust er > element for
configuration. They are added to the map as is, with the cluster name as a key.
A serviceCluster is also added to the serviceClusterList.

For each site specified, the MessageRouter creates an appropriatéGga-
municator object. Then it tries to get the site description. If the server farethe
mote site is up and running, this should be successful. The site will be adtiex to
mapping with its site name as a key. The site’s collections, services and clusters
will also be added into the static xml lists. If the server for the remote site is not
running, the site will not be included in the siteList or module map. To try again
to access the site, either Tomcat must be restarted, or a run-time recessigur
command must be sent (see Section 1.7).

The MessageRouter also looks inside the siteld ect directory, and loads
up a Collection object for each valid collection found. I§& | ecti onl nit. xm
file is present, a subclass of Collection may be used. The Collection objetd re
its bui | dConfi g. xnl andcol | ecti onConfi g. xm files, determines the metadata,
and loads ServiceRack classes based on the names specifiedddonf i g. xni .
The<servi ceRack> XML element is passed to the object to be used in configura-
tion. Thecol I ecti onConfi g. xm contents are also passed in to the ServiceRacks.
Any format or display information that the services need must be extracied f
the collection configuration file. Collection objects are added to the module map
with their name as a key, and also a collection element is added into the collection-
List XML.

34

3.3 Message passing

There are two types of messages used by the system: external andlinmtesaa
sages. All messages have an enclosimngssage> element, which contains either
one or more requests, or one or more responses. In the followingtests, the
message element is not shown, but is assumed to be present. Action isiGnedn

is originated by a request coming in from the outside. In the standard asddb
Greenstone, this comes from a servlet and is passed into the Receptidmist. T
“external” type request is a request for a page of data, and contagresen-
tation of the CGI style arguments. A page of XML is returned, which can be in
HTML format or other depending on the output parameter of the request.

Messages inside the system (“internal” messages) all follow the same basic
format: message elements contain multiple request elements, or multiple response
elements. Messaging is all synchronous. The same number of resEEnses
guests will be returned. Currently all requests are independent, segungsts can
be combined into the same message, and they will be answered separately, with
their responses being sent back in a single message.

When a page request (external request) comes in to the Receptionisksit 100
at the action attribute and passes the request to the appropriate Action module
The Action will fire one or more internal requests to the MessageRoutsedba
on the arguments. The data is gathered into a response, which is retuithed to
Receptionist. The page that the receptionist returns contains the orignadst,
the response from the action and other info as needed (depends ormp¢hefty
Receptionist). The data may be transformed in some way — for the Greenstone
servlet we transform using XSLT to generate HTML pages.

Actions send internal style messages to the MessageRouter. Some can be an-
swered by it, others are passed on to collections, and maybe on to selnieesal
requests are for simple actions, such as search, retrieve metadatee gidament
text There are different internal request types: describe, pspsgstem, format,
status. Process requests do the actual work of the system, while the qtéser ty
get auxiliary information. The format of the requests and responsesafdr in-
ternal request type are described in the following sections. Exterdalrstyuests,
and their page responses are described in the Section about paggtigan&ec-
tion 3.9).

3.4 ‘’describe’-type messages

The most basic of the internal standard requests is “describe-ydurgkIEh can

be sent to any module in the system. The module responds with a semi-prédefine
piece of XML, making these requests very efficient. The response defned
apart from any language-specific text strings, which are put togathesich request
comes in, based on the language attribute of the request.

<request |ang="en’ type='describe to=""'/>

35

If the t o field is empty, a request is answered by the MessageRouter. An example
response from a MessageRouter might look like this:

<response | ang="en' type='describe’ >
<servi celLi st/ >
<siteList>
<site name=’org. greenstone. gsdl 1’
address="http://| ocal host: 8080/ gr eenst one3/ servi ces/ | ocal site
type='soap’ />
</siteList>
<servi ceC usterList>
<servi ceCl uster name="build" />
</ serviced usterList>
<col | ecti onLi st >
<col | ecti on nane=' org. greenst one. gsdl 1/
org. greenstone. gsdl 2/fao’ />
<col | ecti on nane=’ org. greenstone. gsdl 1/ deno’ />
<col | ecti on nane=' org. greenstone. gsdl 1/fao’ />
<col | ection nane="nyfiles’ />
</ col | ecti onLi st >
</ response>

This MessageRouter has no individual site-wide services (an etaptyi celLi st >),
but has a service cluster called build (which provides collection importing and
building functionality). It communicates with one sit&,g. gr eenst one. gsdl 1.
It is aware of four collections. One of thes®f i | es, belongs to it; the other three
are available through the external site. One of those collections is actuattyafr
further external site.

It is possible to ask just for a specific part of the information provided by a
describe request, rather than the whole thing. For example, these twaesgsa
thecol | ecti onLi st and thesi t eLi st respectively:

<request |ang="en’ type='describe to=""'>
<par anLi st >
<par am name=" subset’ val ue='collectionList’/>
</ par anii st >
</ request >

<request |ang="en’ type='describe’ to=""'>
<par anLi st >
<par am name=" subset’ value="siteList’'/>
</ par anii st >
</ request >

Subset options for the MessageRouter inclesle ect i onLi st , servi ced uster Li st ,
servicelLi st,siteList.

When a collection or service cluster is asked to describe itself, what isestur
is a list of metadata, some display elements, and a list of services. For example,
here is such a message, along with a sample response.

<request |ang="en’ type='describe’ to= ngppdeno’ />

36

<response frone"ngppdend" type="describe">
<col | ecti on nane="ngppdeno" >

<di spl ayltem | ang="en" nane="nane">gr eenst one ngpp deno

</ di spl ayl t emr>

<di spl ayltem | ang="en" nane="description">This is a
denonstration collection for the Greenstone digita
library software. It contains a small subset (11 books)
of the Humanity Devel opnment Library. It is built with
ngpp. </ di spl ayl t en>

<di spl ayltem | ang="en" name="i con">ngppdeno. gi f </ di spl ayl ten>

<servi celi st >
<servi ce nanme="Docunent StructureRetrieve" type="retrieve" />
<servi ce nanme="Docunent Met adat aRetri eve" type="retrieve" />
<servi ce name="Document Cont ent Retri eve" type="retrieve" />
<servi ce name="Cl assifierBrowse" type="browse" />
<servi ce nanme="d assi fi er BrowseMet adat aRetri eve"

type="retrieve" />

<servi ce name="Text Query" type="query" />
<servi ce name="Fi el dQuery" type="query" />
<servi ce name="AdvancedFi el dQuery" type="query" />
<servi ce name="Phi ndAppl et" type="applet" />

</ servicelLi st>

<met adat alLi st >
<met adat a nane="creat or" >greenst one@s. wai kat 0. ac. nz</ net adat a>
<met adat a name="nunDocs" >11</ net adat a>
<met adat a name="bui |l dType" >ngpp</ net adat a>
<met adat a nane="httpPat h">http:// kanuka: 8090/ gr eenst one3/ si t es/

| ocal site/coll ect/ngppdeno</ net adat a>
</ net adat aLi st >
</ col l ection>
</ response>

Subset options for a collection or serviceCluster inclugteadat aLi st , ser vi celi st ,
anddi spl ayl t erli st .

This collection provides many typical services. Notice how this response lists
the services available, while the collection configuration file for this collection
(Figure 5) described serviceRacks. Once the service racks hawecbafigured,
they become transparent in the system, and only services are referidabte are
three document retrieval services, for structural information, metadathcon-
tent. The Classifier services retrieve classification structure and metddese
five services were all provided by the GS2MGPPRetrieve ServiceRdmkthree
guery services were provided by GS2MGPPSearch serviceRatlpravide dif-
ferent kinds of query interface. The last service, PhindApplet, isiged by the
PhindPhraseBrowse serviceRack and is an applet service.

A descri be request sent to a service returns a list of parameters that the service
accepts and some display information, (and in future may describe the tiypen
for the request and response). Subset options for the requestamealughii st
anddi spl ayl t enli st.

Parameters can be in the following formats:

37

<param nane=" xxx' type='integer|bool ean|string|invisible default="yyy />

<param nanme=' xxx' type='enumsingle|lenummlti’ default="aa />
<option nanme='aa’'/><option nanme='bb'/>..

</ par an®

<param nane=" xxx' type="multi’ occurs="4">
<param.../>
<param.../>

</ par anp

If no default is specified, the parameter is assumed to be mandatory. tdere a
some examples of parameters:

<par am nane=' case’ type=' bool ean’ default="0"/>
<par am nane=" nmaxDocs’ type='integer’ default="50"/>

<param nane='index’ type="enum default="dtx >
<option name="dtx’ />
<option nanme='stt’'/>
<option nane='stx’'/>

<par ane

<I-- this one is for the text box and field list for the
sinple field query-->
<param nane="si npleField type="multi’ occurs=4">
<param name='fqv’' type='string />
<param nanme="fqf’ type="enumsingle >
<option nane='TIl’'/><option nane=" AU / ><option name=' CR />
</ par an®
</ par an®

The type attribute is used to determine how to display the parameters on a web
page or interface. For example, a string parameter may result in a textextry

a boolean an on/off button, enusmngle/enurmmulti a drop-down menu, where
one or many items, respectively, can be selected. A multi-type parameternt@sdica
that two or more parameters are associated, and should be displayedré&iply.
For example, in a field query, the text box and field list should be associakex
occurs attribute specifies how many times the parameter should be displayed on
page. Parameters also come with display information: all the text stringsdtede
present them to the user. These include the name of the parameter anghldng dis
values for any options. These are included in the above parameteiptiessrin

the form of<di spl ay! t en» elements.

A service description also contains some display information—this includes
the name of the service, and the text for the submit button.

Here is a sample describe request to the FieldQuery service of collectioh mgp
pdemo, along with its response. The parameters in this example include their dis-
play information. Figure 9 shows an example HTML search form that may be
generated from this describe response.

<request | ang="en" to="ngppdeno/Fi el dQuery" type="describe" />

38

<response fron¥"ngppdeno/ Fi el dQuery" type="descri be">
<servi ce name="Fi el dQuery" type="query">
<di spl ayl t em nane="nane" >For m Quer y</ di spl ayl t en»
<di spl ayl t em nane="subni t " >Sear ch</ di spl ayl t en>
<par amnLi st >
<par am def aul t =" Doc" name="1|evel " type="enum si ngl e">
<di spl ayl tem nane="nanme">G anul arity to search at</displayltenr
<opti on name="Doc" >
<di spl ayl t em nane="nane" >Docunent </ di spl ayl t en»
</ option>
<opti on name="Sec">
<di spl ayl t em nane="nane" >Secti on</ di spl ayl t em>
</ opti on>
<option name="Para">
<di spl ayl t em nane="nane" >Par agr aph</ di spl ayl t en>
</ opti on>
</ par an®
<par am def aul t ="1" nane="case" type="bool ean">
<di spl ayl t em nane="name">Turn casefol ding </di spl ayltenm>
<option name="0">
<di spl ayl t em nane="nane" >of f </ di spl ayl t en>
</ opti on>
<option name="1">
<di spl ayl t em nane="nane" >on</ di spl ayl t en>
</ option>
</ par an®
<par am def aul t="1" nane="stem' type="bool ean">
<di spl ayl t em nane="nane">Turn stenm ng </di spl ayltenr
<option name="0">
<di spl ayl t em nane="nane" >of f </ di spl ayl t en>
</ opti on>
<option name="1">
<di spl ayl t em nane="nane" >on</ di spl ayl t en>
</ opti on>
</ par an®>
<par am def aul t =" 10" nane="naxDocs" type="integer">
<di spl ayl t em nane="nane" >Maxi rum docunents to return
</ di spl ayl t e
</ par an®
<par am nare="si npl eFi el d" occurs="4" type="nulti">
<di spl ayl t em nane="nane" ></ di spl ayl t en>
<param name="fqv" type="string">
<di spl ayl t em nane="nane">Wrd or phrase </displayltenr
</ par ane>
<par am def aul t ="ZZ" nane="fqf" type="enum single">
<di spl ayl tem nane="nane">i n fiel d</di spl aylten>
<opti on name="ZzZ">
<di spl ayl tem name="nane">al | fi el ds</ di spl ayl t en»
</ opti on>
<option name="TX">
<di spl ayl t em nane="nane" >t ext </ di spl ayl t enr
</ opti on>
<option name="TI">

39

Form Query

Granularity to search at I Section =]

Tum casefolding Iﬂ

Turn stemming Iﬂ

Mazimum documents to retun IT

Search for in field

| [All fields =]
EAIl flelds (=]

|
I TextOnly
|

Search |

subject
Title

Figure 9: The previous query service describe response as didmaytbe search
page.

<di spl ayl t em nane="nane">Ti t| e</ di spl ayl tem>
</ opti on>
<opti on nane="SU'>
<di spl ayl t em nane="nane" >Subj ect </ di spl ayl t en>
</ opti on>
<opti on nane="ORG'>
<di spl ayl t em name="nane" >Or gani zat i on</ di spl ayl t en>
</ opti on>
<opti on nane="SO'>
<di spl ayl t em nane="nane" >Sour ce</ di spl ayl t em>
</ opti on>
</ par ane
</ par an®
</ par aniLi st >
</ service>
</ response>

A describe request to an applet type service returns the applet HT Mieate
this will be embedded into a web page to run the applet.

<request type='describe’ to=" ngppdeno/ Phi ndApplet’'/>

<response type='describe’ >
<servi ce name=' Phi ndAppl et’ type='query’ >
<appl et ARCHI VE=' phind.jar, xerceslnpl.jar, gsdl3.jar,
jaxp.jar, xm-apis.jar’
CODE=’ or g. gr eenst one. appl et. phi nd. Phi nd. cl ass
CODEBASE=" | i b/ j ava
HEI GHT=" 400" W DTH=" 500’ >
<PARAM NAME=' | i brary’ VALUE="'/>
<PARAM NAME=’ phi ndcgi® VALUE=" ?a=a&anp; sa=r &np; sn=Phi nd’ / >

40

<PARAM NAME=’ col | ection’ VALUE=' ngppdeno’ />
<PARAM NAME=' cl assifier’ VALUE='1' />
<PARAM NAME=’ ori entation’ VALUE= vertical’' />
<PARAM NAME=" depth’ VALUE='2' />
<PARAM NAME='resul torder’ VALUE='L,|,E e,D/d />
<PARAM NAME=’ backdrop’ VALUE='interfaces/default/>
i mages/ phi ndbgl.pg’' />
<PARAM NAME=' font si ze’ VALUE=' 10" />
<PARAM NAME=’ bl ocksi ze’ VALUE=' 10" />
The Phind java appl et.
</ appl et >
<di spl ayl t em name="nane" >Br owse phrase hi erarchi es</displ aylten>
</ service>
</ response>

Note that the library parameter has been left blank. This is because library
refers to the current servlet that is running and the name is not nebeg&sawn
in advance. So either the applet action or the Receptionist must fill in thisptea
before displaying the HTML.

3.5 ’system’-type messages

“System” requests are used to tell a MessageRouter, Collection or Selwster
to update its cached information and activate or deactivate other modules. Fo
example, the MessageRouter has a set of Collection modules that it can thlk to.
also holds some XML information about those collections—this is returned when
a request for a collection list comes in. If a collection is deleted or modified, or
a new one created, this information may need to change, and the list of &vailab
modules may also change. Currently these requests are initiated by pad@llar
requests (see Section 1.7).

The basic format of a system request is as follows:

<request type='system to=""'>
<system.../>
</ request >

One or more actual requests are specified in system elements. The following
are examples:

<system type='configure subset="'/>

<system type='configure’ subset='collectionList’/>

<system type='activate nodul eType='collection” nodul eNanme=" deno’ />
<system type='deactivate’ npdul eType='site’ nodul eNane="sitel />

The first request reconfigures the whole site—the MessageRoutettgoagh
its whole configure process again. The second request just reaa¥itpe collectionList—
the MessageRouter will delete all its collection information, and re-look throug
the collect directory and reload all the collections again. The third regsiest
activate collection demo. This could be a new collection, or a reactivatiom alta

41

one. If a collection module already exists, it will be deleted, and a new odedba
The final request deactivates the site sitel—this removes the site from thistsite
and module map, and also removes any of that sites collections/servicethrom
static lists.

A response just contains a status message example:

<st at us>MessageRout er reconfi gured successful | y</status>
<status>Error on reconfiguring collectionList</status>
<status>col |l ecti on: denp acti vat ed</ st at us>
<status>site:sitel deactivated</status>

System requests are mainly answered by the MessageRouter. Ho@eler,
lections and ServiceClusters will respond to a subset of these requests.

3.6 ’format’-type messages

Collection designers are able to specify how their collection looks to a certain
degree. They can specify format statements for display that will apply e Huts

of a search, the display of a document, entries in a classification hierdorhy
example. This info is generally service specific. All services responddonaat
request, where they return any service specific formatting information pidly
request and response looks like this:

<request | ang="en" to="ngppdeno/Fi el dQuery" type="format" />

<response fron¥"nmgppdeno/Fi el dQuery" type="format">
<f or mat >
<gsf:tenpl ate mat ch="docunent Node" ><t d><gsf: | i nk>
<gsf:netadata nanme="Title" />(<gsf: metadata name="Source" />)
</ gsf:link></td>
</ gsf:tenpl ate>
</ f or mat >
</ response>

The actual format statements are described in Section 2.4. They are templates
written directly in XSLT, or in GSF (GreenStone Format) which is a simple XML
representation of the more complicated XSLT templates. GSF-style format state-
ments need to be converted to proper XSLT. This is currently done by tbepRe
tionist (but may be moved to an ActionHelper): the format XML is transformed to
XSLT using XSLT with the configformat.xsl stylesheet.

3.7 ’status’-type messages

These are only used with process-type services, which are those aheguest is
sent to start some type of process (see Section 3.8.4). An initial 'pfoegsest
to a 'process’ service generates a response which states whetheotkesphad
successfully started, and whether its still continuing. If the process imslted,

5TODO: add in error/status codes

42

Table 8: Status codes currently used in Greenstone3

code name code meaning
value
SUCCESS 1 the request was accepted, and the process was completed
ACCEPTED 2 the request was accepted, and the process has béeh stair
it is not completed yet
ERROR 3 there was an error and the process was stopped

CONTINUING 10 the process is still continuing

COMPLETED 11 the process has finished

HALTED 12 the process has stopped

INFO 20 just an info message that doesn’t imply anything

status requests can be sent repeatedly to the service to poll the statgsheasid
to identify the process. Status codes are used to identify the state of apréote
values used at the moment are listed in TalSle 8

The following shows an example status request, along with two responees, th
first a 'OK but continuing’ response, and the second a 'successfaltypteted’
response. The content of the status elements in the two responses is thie outp
from the process since the last status update was sent back.

<request |ang="en" to="build/InportCollection" type="status">
<par anLi st >
<par am nane="pi d" val ue="2" />
</ par aniLi st >
</request >

<response fron¥"buil d/InmportCollection">
<status code="2" pid="2">Col |l ection construction: inport collection.

command = inport.pl -collectdir /research/kjdon/home/greenstone3/web/sites/
| ocal site/collect testl
starting
</ status>

</ response>

<response fron¥"build/InportCollection">

<status code="11" pid="2">RecPlug: getting directory
/ resear ch/ kj don/ hone/ gr eenst one3/ web/ sites/| ocal site/collect/testl/inport
WARNI NG - no plugin could process /.keepne

EE R S S O S S O

I nport Conpl ete
EE R S O O O O O O
* 1 docunent was considered for processing
* 0 were processed and included in the collection
* 1 was rejected. See /research/kjdon/ hone/ greenst one3/ web/sites/
localsite/collect/testl/etc/fail.log for a list of rejected docunents
Success
</ st atus>
</ response>

A more standard set of codes should probably be used, for exaineleTTP codes

43

3.8 ’process’-type messages

Process requests and responses provide the major functionality ofdteensy
these are the ones that do the actual work. The format depends omtice seey
are for, so I'll describe these by service.

Query type services TextQuery, FieldQuery, AdvancedFieldQueB2B5Search,
GS2MGPPSearch), TextQuery (LuceneSearch) The main type oéstxun the
system are for services. There are different types of servicesently: query,
browse, retrieve, process, appl et, enri ch. Query services do some kind of
search and return a list of document identifiers. Retrieve servicesetam ithe
content of those documents, metadata about the documents, or othecessou
Browse is for browsing lists or hierarchies of documents. Process &ypiEess are
those where the request is for a command to be run. A status code will beeektu
immediately, and then if the command has not finished, an update of the status can
be requested. Applet services are those that run an applet. Enngtesetake a
document and return the document with some extra markup added.

Other possibilities include transform, extract, accrete. These typesviceser
generally enhance the functionality of the first set. They may be usedgdtoin
lection formation: 'accrete’ documents by adding them to a collection, 'toansf
the documents into a different format, ’extract’ information or acronymsnftioe
documents, 'enrich’ those documents with the information extracted or hipgdd
new information. They may also be used during querying: 'transform’emyge-
fore using it to query a collection, or 'transform’ the documents you gek lozto
an appropriate form.

The basic structure of a service 'process’ request is as follows:

<request |ang="en’ type= process’ to=" denon/ TextQuery’ >
<par anii st/ >
ot her elenents...

</ request >

The parameters are name-value pairs corresponding to parametersethat w
specified in the service description sent in response to a describesteque

<par am nane=' case’ value="1"/>
<par am nane=" maxDocs’ val ue='34'/>
<param nane="index’' value="dtx'/>

Some requests have other content—for document retrieval, this would bbe a lis
of document identifiers to retrieve. For metadata retrieval, the content is tloé lis
documents to retrieve metadata for.

Responses vary depending on the type of request. The following setimk
at the process type requests and responses for each type of service

44

3.8.1 ’query’-type services

Responses to query requests contain a list of document identifiers vetbrepme

other information, dependent on the query type. For a text query, thiglesterm
frequency information, and some metadata about the result. For instateod, a
qguery on 'snail farming’, with the parameter 'maxDocs=10" might returnfitss

10 documents, and one of the query metadata items would be the total number of

documents that matched the quéry.
The following shows an example query request and its response.

Find at most 10 Sections in the mgppdemo collection, containing the word

snail (stemmed), returning the results in ranked order:

<request |ang="en’ to="ngppdeno/ Text Query" type="process">

<par anLi st >
<par am name="naxDocs" val ue="10"/>
<par am name="querylLevel " val ue="Section"/>
<par am nanme="stent' val ue="1"/>
<par am name="nat chMbde" val ue="sone"/>
<par am nanme="sortBy" val ue="1"/>
<par am nane="i ndex" val ue="t0"/>
<par am nane="case" val ue="0"/>
<par am nanme="query" val ue="snail"/>

</ par anii st >

</ request >

<response fron¥"ngppdeno/ Text Query" type="process">
<net adat aLi st >
<net adat a name="nunDocsMat ched" val ue="59" />
</ met adat aLi st >
<docurent NodelLi st >
<docurent Node nodel D="HASHac0a04dd14571c60d7f bf d. 4. 2"
docType=' hi erarchy’ nodeType="leaf" />

<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12"

docType=’ hi erarchy’ nodeType="leaf" />

<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 1"
docType=' hi erarchy’ nodeType="interior" />

<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 2. 2"
docType= hi erarchy’ nodeType="leaf" />

</ docunent NodeLi st >
<ternlist>

<termfield="" freq="454" nanme="snail" nunDocsMat ch="58"

<equi vTer nLi st >

<termfreq="" nanme="Snail" numDocsMatch="" />
<termfreg="" name="snail" nunDocsMatch="" />
<term freg="" name="Snails" nunmDocsMatch="" />
<term freq="" nanme="snails" nunDocsMatch="" />
</ equi vTernii st >
</ternp
</termlist>

</ response>

"no metadata about the query result is returned yet.

45

stenE"3">

The list of document identifiers includes some information about document
type and node type. Currently, document types inchide! e, paged andhi er ar chy.
si mpl e is for single section documents, i.e. ones with no sub-structisged is
documents that have a single list of sections, whiler archy type documents
have a hierarchy of nested sections. paged andhi er ar chy type documents,
the node type identifies whether a section is the root of the document, araintern
section, or a leaf.

The term list identifies, for each term in the query, what its frequency in the
collection is, how many documents contained that term, and a list of its equivalen
terms (if stemming or casefolding was used).

3.8.2 ’browse’-type services

Browse type services are used for classification browsing. The seqassists of
a list of classifier identifiers, and some structure parameters listing whatustu
to retrieve.

<request | ang="en" to="ngppdenn/ d assifierBrowse" type="process">
<par anLi st >
<param nanme="structure" val ue="ancestors" />
<param name="structure" value="children" />
</ par anii st >
<cl assi fi er NodelLi st >
<cl assi fi er Node nodel D="CL1.2" />
</ cl assi fi er NodeLi st >
</ request >

<response fron¥"ngppdeno/ d assifierBrowse" type="process">
<cl assi fi er NodeLi st >
<cl assi fi er Node nodel D="CL1">
<nodeSt ruct ur e>
<cl assi fi er Node nodel D="CL1">
<cl assi fi er Node nodel D="CL1. 2">
<cl assi fi er Node nodel D="CL1.2.1" />
<cl assi fi er Node nodel D="CL1.2.2" />
<cl assi fi er Node nodel D="CL1.2.3" />
<cl assi fi er Node nodel D="CL1. 2.4" />
<cl assi fi er Node nodel D="CL1.2.5" />
</ cl assi fi er Node>
</ cl assi fi er Node>
</ nodeSt ruct ure>
</ cl assi fi er Node>
</ cl assi fi er NodeLi st >
</ response>

Possible values for structure parameters aa@est or s, parent, si blings,
chil dren, descendants. The response gives, for each identifier in the request,
a <nodeSt ruct ur e> element with all the requested structure put together into a
hierarchy. The structure may include classifier and document nodes.

46

Structural info can also be requested in plaeanti st , and will be returned in
a<nodesSt r uct ur el nf o> element. (See the section on DocumentStructureRetrieve
messages.) Possible values for info parametensua bl i ngs, si bl i ngPosi ti on,
nuntChi | dren.

3.8.3 ’retrieve’-type services

Retrieval services are special in that requests are not explicitly initiatedusgr
from a form on a web page, but are called from actions in responsedotbihgs.
This means that their names are hard-coded into the Actions. Document®Bmten
trieve, DocumentStructureRetrieve and DocumentMetadataRetrieve ar@athe s
dard names for retrieval services for content, structure, and metdahiawoments.
Requests to each of these include a list of document identifiers. Becagsayin-
erally refer to parts of documents, the elements are caliedurent Node>. For
the content, that is all that is required. For the metadata retrieval serviceg-th
guest also needs parameters specifying what metadata is requiredrueturs
retrieval services, requests need parameters specifying what séroctstructural
info is required.

Some example requests and responses follow.

Give me the Title metadata for these documents:

<request | ang="en" to="ngppdeno/ Docunent Met adat aRetri eve" type="process">
<par anLi st >
<par am nanme="net adata" value="Title" />
</ par anii st >
<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2"/ >
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12"/ >
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 1"/ >

</ docunent NodeLi st >
</request >

<response fron="ngppdeno/ Docunent Met adat aRetri eve" type="process">
<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2">
<met adat alLi st >
<met adata name="Titl e">Putting snails in your second pen</netadata>
</ met adat aLi st >
</ docunent Node>
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12" >
<met adat aLi st >
<met adata name="Ti tl e">Now you mnust deci de</ et adat a>
</ met adat aLi st >
</ docunent Node>
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 1" >
<net adat alLi st >
<met adata nane="Ti tl e">I ntroducti on</ net adat a>
</ met adat aLi st >

47

</ docunent Node>
</ docunent NodelLi st >
</ response>

One or more parameters specifying metadata may be included in a request.
Also, a metadata value af | will retrieve all the metadata for each document.

Any browse-type service must also implement a metadata retrieval service to
provide metadata for the nodes in the classification hierarchy. The nams tifét
browse service name plust adat aRet ri eve. For example, the ClassifierBrowse
service described in the previous section should also have a Classifiex&vieta-
dataRetrieve service. The request and response format is exactigntteeas for
the DocumentMetadataRetrieve service, exceptitatunent Node> elements are
replaced bycl assi fi er Node> elements (and the corresponding list element is
also changed).

Give me the text (content) of this document:

<request |ang="en" to="ngppdeno/ Docunent ContentRetrieve" type="process">
<paraniist />
<docunent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" />
</ docunent NodelLi st >
</ request >

<response fron="ngppdeno/ Docunent Content Retri eve" type="process">
<docunent NodeLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" >
<nodeCont ent >&l t ; Secti on> ;
&l t;/B> & t; P ALI G\N=" ; JUSTI FY" ; > ; &l t; / P> ;
&l t; P ALI G\=" ; JUSTI FY" ; > ; 190. When the plants in
your second pen have grown big enough to provide food and
shelter, you can put in the snails. & t;/P>
</ nodeCont ent >
</ docunent Node>
</ docunent NodelLi st >
</ response>

The content of a node is returned ir@deCont ent > element. In this case it
is escaped HTML.

Give me the ancestors and children of the specified node, along with the num-
ber of siblings it has:

<request | ang="en" to="ngppdenn/ Docunent StructureRetrieve" type="process">
<par antii st >
<param name="structure" val ue="ancestors" />
<par am nanme="structure" value="children" />
<par am name="i nfo" val ue="nunsi bl i ngs" />
</ par anii st >
<docunent NodeLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" />
</ docunent NodeLi st >
</ request >

48

<response frone"ngppdeno/ Docunent StructureRetri eve" type="process">
<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2">
<nodeStruct ur el nf o>
<i nfo name="nunSi bl i ngs" val ue="2" />
</ nodeSt ruct ur el nf o>
<nodeStruct ure>
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d"
docType=' hi erarchy’ nodeType="root">
<docurent Node nodel D="HASHac0a04dd14571c60d7f bf d. 4"
docType=' hi erarchy’ nodeType="interior">
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2"
docType=' hi erarchy’ nodeType="leaf" />
</ docunent Node>
</ docunent Node>
</ nodeSt ruct ure>
</ docunent Node>
</ docunent NodeLi st >
</ response>

Structure is returned inside<aodeSt r uct ur e> element, while structural info
is returned in anodeSt r uct ur el nf o> element. Possible values for structure pa-
rameters are as for browse servicestcest ors, parent, siblings, children,
descendant s, ent i re. Possible values for info parameters anesi bl i ngs, si bl i ngPosi ti on,
nuntChi | dren.

3.8.4 ’process’-type services

Requests to process-type services are not requests for data—thmstraome
action to be carried out, for example, create a new collection, or import @totie
The response is a status or an error message. The import and build cosmmeand
take a long time to complete, so a response is sent back after a successfa s
the command. The status may be polled by the requester to see how the ppocess
going.

Process requests generally contain just a parameter list. Like for angeser
the parameters used by a process-type service can be obtained byilaedegjuest
to that service.

Here are two example requests for process-services that are phe bdild
service cluster (hence the addresses all begin with *build/’), followedrbgxam-
ple response:

<request |ang="en’ type=' process’ to='build/ NewCollection >
<par anii st >
<par am name=’ creator’ val ue=" ne@one. com />
<par am nane=' col | Nane’ val ue='the deno collection' />
<par am name=’" col | Short Nane’ val ue=' deno’ />
</ paranm i st >
</ request >

49

<request |l ang="en’ type=' process’ to='build/InportCollection >
<par anLi st >
<par am name=’ col | ecti on’ val ue="deno’ />
</ paran i st>
</ request >

<response fron¥"buil d/InportCollection">
<status code="2" pid="2">Starting process...</status>
</ response>

The code attribute in the response specifies whether the command has been
successfully stated, whether its still going, etc (see Table 8 for a list of rily
used codes). The pid attribute specifies a process id number that caadelen
guerying the status of this process. The content of the status elementen)
just the output from the process so far. Status messages, which wemgbdd
in Section 3.7, are used to find out how the process is going, and whetas it
finished or not.

3.8.5 ’applet’-type services

Applet-type services are those that process the data for an appletudst@gnsists
only of a list of parameters, and the response containsgpl et Dat a> element
that contains the XML data to be returned to the applet. The format of this is
entirely specific to the applet—there is no set format to the applet data.

Here is an example request and response, used by the Phind applet:

<request type='query’ to="ngppdeno/PhindApplet’ >
<par anLi st >
<param nare=' pc’ value="1'/>
<par am name=’ ppt ext’ val ue="health’/>
<par am nanme=" pfe’ value="0"/>
<param name='pl e’ val ue="10"/>
<par am name=" pfd’ value="0"/>
<param nane='pl d" val ue="10"/>
<param name='pfl’ value="0"/>
<param narme="pl|’ val ue="10"/>
</ par aniLi st >
</ request >

<response type=' query’ fronF ngppdeno/ Phi ndAppl et’ >
<appl et Dat a>
<phindData df="9" ef="46" id="933" |f="15" tf="296" >
<expansi onLi st end="10" length="46" start="0">
<expansion df=4" id="8880" nun¥' 0’ tf="59 >
<suf fi x> CARE</suffi x>
</ expansi on>

</ expansi onLi st >
<docurnent Li st end="10" length="9 start="0" >
<docunent freq='78 hash=" HASH4632a8a51d33c47a75c559" nun¥' 0’ >
<title>The Courier - N??159 - Sept- Cct 1996 Dossier Investing

50

in People Country Reports: Mali ; Wstern Sanpa
</title>
</ docunent >

</ docunent Li st >

<t hesaur usLi st end="10" length="15" start="0">
<thesaurus df="7" id="12387 tf="15 type=" RT >

<phrase>PUBLI C HEALTH</ phr ase>

</thesaurus>..

</ t hesaur usLi st >

</ phi ndDat a>
</ appl et Dat a>
</ response>

3.8.6 ’enrich’-type services

Enrich services typically take some text of documents (insiel&eCont ent >

tags) and returns the text marked up in some way. One example of this is the
GatePOSTag service: this identifies Dates, Locations, People and Criyamsz

in the text, and annotates the text with the labels. In the following example, the
request is for Location and Dates to be identified.

<request |ang="en" to="Gat ePOSTag" type="process">
<par anii st >
<par am name="annot ati onType" val ue="Dat e, Locati on" />
</ par aniLi st >
<docunent NodeLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d" >
<nodeCont ent >
FOOD AND AGRI CULTURE ORGANI ZATI ON OF THE UNI TED NATI ONS
Ronme 1986
P- 69
| SBN 92-5-102397-2
FAO 1986
</ nodeCont ent >
</ docunent Node>
</ docunent NodelLi st >
</ request >

<response fronr"CGat ePOSTag" type="process">
<docunent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d" >
<nodeCont ent >
FOOD AND AGRI CULTURE ORGANI ZATI ON OF THE UNI TED NATI ONS
<annot ation type="Locati on">Ronme</annot ati on>
<annot ati on type="Dat e">1986</ annot ati on>
P- 69
| SBN 92-5-102397-2
FAO <annot ati on type="Date">1986</annot ati on>
</ nodeCont ent >
</ docunent Node>

51

</ docunent NodeLi st >
</ response>

3.9 Page generation

A 'page’ is some XML or HTML (or other?) data returned in response texan
ternal 'page’-type request. These requests originate from outsielen&tone , for
example from a servlet, or Java application, and are received by trepiRet

ist. As described below in Section 3.9.1, the requests are XML represeastafio
Greenstone URLs. One of the arguments is action (a). This tells the Redsiption
which Action module to pass the request to.

Action modules decode the rest of the arguments to determine what requests
need to be made to the system. One or more internal requests may be made to the
MessageRouter. A request for format information from the Collectioni€&emay
also be made. The resulting data is gathered together into a single XML sespon
<page>, and returned to the Receptionist.

The page format is described in Section 3.9.2. The XML may be returned as is
or may be modified by the Receptionist. The various Receptionists are dabirrib
Section 3.9.3. The default receptionist used by a servlet transformaviherXo
HTML using XSL stylesheets. Section 3.9.4 looks at collection specific forngattin
in particular for HTML output. Sections 3.9.6 to 3.9.12 look at the various agtion
and what kind of data they gather.

3.9.1 ‘’page’-type requests and their arguments

These are requests for a '‘page’ of data—for example, the home pagsife; the
guery page for a collection; the text of a document. They contain, in XMista
of arguments specifying what type of page is required. If the exteorakgt is
a servlet, the arguments represent the 'CGI’ arguments in a Greensiinelte
two main arguments are (action) andsa (subaction). All other arguments are
encoded as parameters.

Here are some examples of requésts

<request type='page’ action="p' subaction=" about
lang="fr’ output="htm’>
<par anLi st >
<param nanme='c¢’' val ue='deno’' />
</ par anii st >
</ request >

<request type='page’ action="q |ang="en’ output="htm’ >
<par anLi st >
<param nane='s’ val ue=" Text Query’' />
<param nanme='c’ val ue='deno’ />

8In a servlet context, these correspond to the argunssmigsa=about & =deno& =fr, and
a=q& =en&s=Text Quer y&c=denné&rt =r &ca=08&st =1&m=10&q=snai |

52

<param nanme="rt’ value="r’'/>

<l-- the rest are the service specific parans -->
<param nanme='ca' value="0"/> <!-- casefold -->
<param nanme="st’ value="1/> <l-- stem-->

<param name='nm value="10"/> <!-- maxdocs -->

<param name="q' value="snail’/> <!-- query string -->

</ par aniLi st >
</request >

There are some standard arguments used in Greenstone, and thescaitede
in Table 9. These are used by Receptionists and Actions. The GSPara®s cla
specifies all the general basic arguments, and whether they shoulddoesaiot
(Some arguments need to be saved during a session, and this needs to be imple
mented outside Greenstone proper — currently we do this in the servlet, using
servlet session handling). The servlet has an init parameteis cl ass which
specifies which params class to use: GSParams can be subclassegsangecehe
Receptionist and Actions must not have conflicting argument names.

Other arguments are used dynamically and come from the Services. Service
arguments must always be saved during a session. Services mayted tredif-
ferent people, and may reside on a different site. There is no guartiaethere
is no conflict with argument names between services and actions. Tieesefio
vice parameters are namespaced when they are put on the page,sihtndace
(receptionist and action) parameters have no namespace. The defaeispace
is s1 (servicel) — any parameters that are for the service will be padfixéhis.

For example, the case parameter for a search will be put in the page asesl.c
and the resulting argument in a search URL will be sl.case. When actmds-ar
ciding which parameters need to be sent in a request to a service, thegetre
namespace information.

If there are two or more services combined on a page with a single submit
button, they will use namespaces s1, s2, s3 etc as needed. The s Jg@raoeeter
will end up with a list of services. For exampkesText Query, Musi cQuery, and
the order of these determines the mapping order of the namespaces, i.dl sl w
map to TextQuery, s2 to MusicQuery.

3.9.2 page format
The basic page format is:

<page | ang='en’ >
<pageRequest/ >
<pageResponse/ >
</ page>

* show configuration and describe whats its used for

There are two main elements in the page: pageRequest, pageRespoase. Th
pageRequest is the original request that came into the Receptionist—this is in-
cluded so that any parameters can be preset to their previous valuesafople,

53

Argument Meaning Typical values

a action a (applet), q (query), b (browse), p (page), pr (process)
s (system)
sa subaction home, about (page action)
[collection or demo, build
service cluster
S service name TextQuery, ImportCollection
rt request type d (display), r (request), s (status)
ro response only Oor1l-if setto one, the request is carried out

but no processing of the results is done
currently only used in process actions

) output type XML, HTML, WML

| language en, fr, zh ...

d document id HASHXxxx

r resource id ?2?7?

pid process handle an integer identifying a particular process request

Table 9: Generic arguments that can appear in a Greenstone URL

the query options on the query form. The pageResponse contains aditththelt

has been gathered from the system by the action. The other two elements con
tain extra information needed by XSLT. Config contains run-time variablels su

as the location of the gsdl home directory, the current site name, the name of th
executable that is running (e.g. library)—these are needed to allow th& XSL
generate correct HTML URLSs. Display contains some of the text stringdetkin

the interface—these are separate from the XSLT to allow for internatiotiatiza

The following subsections outline, for each action, what data is needid an
what requests are generated to send to the system.

Once the XML page has been put together, the page to return to the user is
created by transforming the XML using XSLT. The output is HTML at this sfag
but it will be possible to generate alternative outputs, such as XML, WML etc
A set of XSLT files defines an ’interface’. Different users can dwathe look
of their web pages by creating new XSLT files for a new ’interface’.t gswe
have a sites directory where different sites ’live’ (ie where their coméigion file
and collections are located), we have an interfaces directory whereftiesick
interfaces ’'live’ (ie their transforms and images are located there). Efauid
XSLT files are located in interfaces/default/transforms. Collections, sitksther
interfaces can override these files by having their own copy of the pppte files.

New interfaces have their own directory inside interfaces/. Sites andtiofiscan
have a transform directory containing XSLT files. The order in which tiB&TX
files are looked for is collection, site, current interface, default inte¥dTODO:
describe a bit more?? currently only can get this locally]

%this currently breaks down for remote sites - need to rethink it a bit.

54

3.9.3 Receptionists

The receptionist is the controlling module for the page generation partedrsr
stone . It has the job of loading up all the actions, and it knows about theages
router it and the actions are supposed to talk to. It routes message®dcetteihe
appropriate action (page-type messages) or directly to the messaggatatirer
types). Receptionists also do other things, for example, adding to the¢zaead
back from the action any information that is common to all pages.

There are different ways of providing an interface to Greenstonem fveb
based CGI style (using servlets) to Java GUI applications. These differter-
faces require slightly different responses from a receptionist, soovide several
standard types of receptionist.

Receptionist: This is the most basic receptionist. The page it returns consists
of the original request, and the response from the action it was sent &h- M
ods preProcessRequest, and postProcessPage are called oruést aeg page,
respectively, but in this basic receptionist, they don’t do anything.

TransformingReceptionist: This extends Receptionist, and overwritéBnoes
cessPage to transform the page using XSLT. An XSLT is listed for eamnan
the receptionists configuration file, and this is used to transform the pags, F
some display information, and configuration information is added to the page.
Then it is transformed using the specified XSLT for the action, and redurne

WebReceptionist: The WebReceptionist extends TransformingReceptilbnis
doesn’t do much else except some argument conversion. To keep ttedbiBrt,
parameters from the services are given shorthames, and these cie tiseweb
pages.

DefaultReceptionist: This extends WebReceptionist, and is the defaulbone f
Greenstone3 servlets. Due to the page design, some extra informatiordesinee
for each page: some metadata about the current collection. The recsipiems
a describe request to the collection to get this, and appends it to the page be
transformation using XSLT.

By default, the LibraryServlet uses DefaultReceptionist. Howeverettsea
servlet init-param calledecept i oni st which can be set to make the servlet use a
different one.

3.9.4 Collection specific formatting

get format info, transform gsf-¢ xsl. transform xml-¢ html
configuration params are passed in to the transformation

3.9.5 CGIl arguments

3.9.6 Page action

PageAction is responsible for displaying kinds of information pages, aache
home page of the library, or the home page of a collection, or the help afd pre

55

erences pages. These pages are not associated with specificssikeitiee other
page types. In general, the data comes from describe requests tsvaodules.
The different pages are requested using the subaction argument. eFbpthe’
page, a 'describe’ request is sent to the MessageRouter—this retligtof all
the collections, services, serviceClusters and sites known about. ¢focelec-
tion, its metadata is retrieved via a 'describe’ request. This metadata is added in
the previous result, which is then added into the page. For the 'about, page
descri be request is sent to the module that the about page is about: this may be a
collection or a service cluster. This returns a list of metadata and a listva€sger

To get an external html page embedded into a greenstone collection, i.e. a two
frame page, with the top frame containing the collection header and navigation b
and the second frame containg the external page, use subaction htmhvauldl
look like a=p&sa=html&c=collname&url=externalurl

3.9.7 Query action

The basic URL isa=q&s=Text Quer y&=deno& t =d/ r . There are three query ser-
vices which have been implemented: TextQuery, FieldQuery, and Add&kiedd-
Query. These are all handled in the same way by query action. For agehthe
service description is requested from the service of the current coliqeima de-
scribe request). This is currently done every time the query page is dishlaypt
should be cached. The description includes a list of the parameters &/dilab
the query, such as case/stem, max num docs to return, etc. If the reqesétt)
parameter is set to d for display, the action only needs to display the fornthiand

is the only request to the service. Otherwise, the submit button has bessegyre
and a query request to the TextQuery service is sent. This has all thegtars
from the URL put into the parameter list. A list of document identifiers is retlirne
A followup query is sent to the MetadataRetrieve service of the collection: the
content includes the list of documents, with a request for some of their ni@tada
Which metadata to retrieve is determined by looking through the XSLT that will be
used to transform the page. The service description and query resgtiabined

into a page of XML, which is returned to the Receptionist.

3.9.8 Applet action

There are two types of request to the applet actica: & rt=d anda=a & rt=r.
The valuert =d means “display the applet.” Aescribe request is sent to the
service, which returns theappl et > HTML element. The transformation file
appl et . xsI embeds this into the page, and the servlet returns the HTML.

The valuet =r signals a request from the applet. A process request containing
all the parameters is sent to the applet service. The result contains letDatp
element, which contains a single element - this element is returned directly to the
applet, in XML. No transformation is done. Because the AppletAction doesn’
know or care anything about the applet data, it can work with any apptetes

56

pair.

Note that the applet HTML may need to know the name ofithe ary pro-
gram. However, that name is chosen by the person who installed the sotinehr
will not necessarily be “library”. To get around this, the applet cargoparameter
called “library” into the applet data with a null value:

<PARAM NAME=' | i brary’ VALUE="'/>

When the AppletAction encounters this parameter it inserts the name of tleaturr
library servlet as its value.

3.9.9 Document action

DocumentAction is responsible for displaying a document to the user. Thiayis
might involve some metadata and/or text for a document or part of a docuRzent.
hierarchical documents, a table of contents may be shown, while for ukogped
ments (those with a single linear list of sections), next and previous pag@&butto
may be shown. These different display types require different infoomabout

the document. Depending on the arguments, DocumentAction will send teques
to several services: DocumentMetadataRetrieve, DocumentStructuesRetnd
DocumentContentRetrieve.

A basic display, for example, Title and text, involves a metadata request to
get the Title, and a content request to get the text. Hierarchical tablentérds
display requires a structure request. If the entire contents is to be didplige
parametest r uct ur e=ent i r e would be sentin the request. Otherwise, parameters
structure=ancestors, structure=chi | drenand possiblgt r uct ur e=si bl i ngs
may be used, depending in the position of the current node in the docunhese T
return a hierarchical structure of nodes, containing ancestor ncligsnodes and
sibling nodes, respectively. For paged display, the structure is n@lyobheeded.

A structure request is still sent, but this time it requests some informationy rathe
the structure itself. The information requested includes the number of silalimtys
the current position of the current node, or the number of children (ittheent
node is the root of the document).

Metadata may be requested for the current node, or for any nodessirtice
ture, and content also. The metadata and content are added into thpragtpro
nodes in the structure hierarchy, and this is returned as the page data.

3.9.10 XML Document action

XMLDocumentAction is a little different to the standard DocumentAction. It op-
erates in two modesgxt andt oc. Intext mode, it will retrieve the content of the
current document node using a DocumentContentRetrieve request. imode, it
retrieves the entire table of contents for the document using a Documemt$truc
eRetrieve request. Either mode may also retrieve metadata for the cucton se
or each section in the table of contents.

57

Table 10: Configure CGI arguments

arg description

a=s system action

sa=d¢ad type of system request: ¢ (configure), a (add/activate),
d (delete/deactivate)

c=demo the request will go to this collection/servicecluster

instead of the message router
ss=collectionList subset for configure: only reconfigure this part.
For the MessageRouter, can be serviceClusterList, serviceList,
collectionList, siteList.
For a collection/cluster, can be metadataList or serviceList.
sn=demo
st=collection

3.9.11 GS2Browse action

GS2BrowseAction is for displaying Greenstone2 style classifiers.

3.9.12 System action

SystemAction allows for manual reconfiguration of various componentarat r
time. There is no interactive web-page displaying the options, it merely turns a
set of CGI arguments into an XML system request. The response fromstens
request is a message which is displayed to the user.

3.10 Other code information

Greenstone has a set of Utility classes, which are briefly described e Tab

58

Table 11: The utility classes in org.greenstone.gsd|3.util

Utility class

Description

CollectionClassLoader

DBInfo Class to hold info from GDBM database entry

Dictionary wrapper around a Resource Bundle, providing strings withnpeters

GDBMWrapper Wrapper for GDBM database. Uses JavaGDBM

GSConstants holds some constants used for servlet arguments éigdretion variables

GSEntityResolver an EntityResolver which can be used to find resourckss DTDs

GSFile class to create all Greenstone file paths e.g. used to locate catidigur
files, XSLT files and collection data.

GSHTML provides convenience methods for dealing with HTML, e.g. ingktrings
HTML safe

GSParams contains names and default values for interface parameter

GS2Params a subclass of GSParams which holds default servioegparsitoo, neces-
sary for the gs2 style interface.

GSPath used to create, examine and modify message address paths

GSStatus some static codes for status messages

GSXML lots of methods for extracting information out of Greenstone Xl cre-
ating some common types of elements. Also has static Strings for element
and attribute names used by Greenstone .

GSXSLT some manipulation functions for Greenstone XSLT

GlobalProperties Holds the global properties (from global.properties)

MacroResolver Used with replace elements in collection configuration filgdaces a
macro or string with another string, metadata or text from a dictionary

GS2MacroResolver MacroResolver for GS2 collections, that useshitMdatabase

Misc miscellaneous functions

MyNodelList A simple implementation of an XML NodeList

OoID class to handle Greenstone (2) OIDs

Processing Runs an external process and prints the output fromoitespr

SQLQuery contains a connection to a SQL database, along with some mébhaat-
cessing the data, such as converting MG numbers to and from Greenston
OIDs.

XMLConverter provides methods to create new Documents, parse Stirigles into Doc-
uments, and convert Nodes to Strings

XMLTransformer methods to transform XML using XSLT

XSLTULtIl contains static methods to be called from within XSLT

ClassLoader that knows about a collectiomsnmas directory

4 Developing Greenstone3 : Adding new features

[TODO: finish this section]

4.1 Creating and using new services

There are three parts to adding new services to Greenstone3: defirimgwh
service, specifying that it should be loaded, and using it. If you are taltan
Greenstone using the SOAP interface, then the firsttwo parts are all #hdttme
be done. If you are using the Greenstone servlet interface, then ypuneea to
do work for the third part, depending on what kind of new service it igoli are
adding a service of a type that is already present, for example, a newsgrgice,
then the query action can just use your new service as is (assuming itijsisghe

59

same way as the standard query services). However, if it is a new tygernote
that the interface and actions don’t know about, you willl need to add sactan
or modify an existing one so that your service is actually used.

4.1.1 Creating the service

You will need to write a new Java class which inherits frémg. gr eenst one. gsdl 3. servi ce. Servi ceRack
(or a subclass of this). The class will need to implement at leastdhig gur e,
process<Ser vi ceNane> andget Ser vi ceDescri pti on methods. There is a dummy
class calledy/NewSer vi cesTenpl at e. j ava in gr eenst one3/ r esour ces/ j ava which
describes these methods and what needs to be done.

Servi ceRack. j ava handles the maipr ocess method. If the request type is
'describe’, then it will send back a copy of sharviceinfo, which contains a list
of services. If there request type is describe, but for a particuteicge then it will
call get Servi ceDescropt i on for that service. For a format request, it will send
any format element found in formatfo_map for that service. For a processing
request to a service, then theocess<Ser vi ceNane> method will be called.

Once the class is written, it needs to be compiled up and either included in one
of the existing jar files, or added in as a jar filegieenst one3/ web/ VEB- I NF/ | i b
or a class file t@r eenst one3/ web/ WEB- | NF/ ¢l asses.

4.1.2 Loading the service

To have the library load in your new service, it needs to be specified infagyooa-
tion file somewhere. For a collection service, add a rewr vi ceRack> element

to the collection’sui | dConfi g. xm file. This element should contain any infor-
mation that the class needs to configure its service(s). For a site-wideeserv
add the<servi ceRack> element to the site'si t eConfi g. xm file, either in the
servi ceRackLi st or as part of aervi ceC uster.

4.1.3 Using the service

If you are using the SOAP web service, then you can send an XML sedirectly
to the service. The 'address’ of the request will be the service name iisite-
wide service, cluster-name/service-name if it is site-wide but belonging te&eglu
or collection-name/service-name if it belongs to a collection. You will need to
know the format of the XML request and response that the servicecexpad
returns.

If you want to access your new service through the current sertéatace that
uses actions, then whether you need to do more work or not dependsatkivd of
service you have implemented. If you have written a new query or brosvsis,
for example, that has teh same request and response format as the eestioes,
then you don't need to do anything else. Your collection can just use theuery
service straight away. If the service is of an existing type, but neegisithing

60

different in the request/response format, then you may need to modify dmegxis
action to supply or use the new information. If the service is of a completely new
type, then you will probably need a new action to talk to the service and display
the results.

4.2 creating new actions/pages
4.3 new interfaces

It is easy to create new interfaces to Greenstone3. Here we are talkingiater-
faces other than those to display in typical browser.

Handheld devices: Use the standard servlet setup, but with a diffeeeiof
XSLT files to format the pages for small screens, or use WML.

Java GUI Interface: There are couple of alternatives. Dependinghai you
want to display in the GUI, you could talk to either a Receptionist or a Message
Router. The library classes can be set up and compiled into the GUI pmogra
Talking to a Receptionist will give you access to pages of XML. It is likelyt tha
the standard Receptionist class would be used - this doesn't transferdath to
HTML. Queries such as “give me the home page of a collection” and “dodlhe f
lowing search” can be issued. All the data needed for the result vievuises.
Queries are quite simple, but are limited to what kinds of Actions are available in
the library. Talking to a MessageRouter requires a bit more effort onghepthe
GUI program, but results in greater flexibility. The kinds of queries thattmis-
sued are individual units of action, such as “describe yourselfarge, “retrieve
the content for this document”. More than one request may need to be wrade f
a particular feature of the GUI. However you can ask for any combinatialata
available in the system, you are not relying on Actions. What you will implement
though, may be a lot like the Action code in terms of request sequences.

Interfaces in other programming languages: Because the communication is
all XML based, other interfaces can talk to the Java library if a communication
protocol is set up. This could be done using SOAP for example. Likedea J
GUI interfaces, the program could talk to a Receptionist or to a MessageRo
e.g. Java interface. where you can interface to. MR vs Receptionist.reditfe
receptionists. e.g., handheld - using servlet, transforming recpt, buseeof
XSLT Java program other program - talk to recpt but just get back Xidta for
pages. Java gui - just talk to MR, do all processing itself.

Remote interfaces: remote interfaces can be set up in the same way as above
using a communication protocol between the interface, and the librarygemogr

4.4 New types of collections

The standard type of collection is built with the Greenstone2 Perl collectiiba bu
ing system. There are many options to this, but it is conceivable that théeap
don’t meet the needs of all collection builders. Greenstone3 has an abiligeto
any type of collection you can come up with, assuming some Java code isgutovid

61

There are four levels of customization that may be needed with new collections
service, collection, interface XSLT, and action levels. We will use the el@amp
collections that come with Greenstone to describe these different levels.

Firstly, new service classes need to be written to provide the functionality to
search/browse/whatever the collection. If the services have similar icésrénd
functionality to the standard services, this may be all that is needed. Foipéxa
MGPP collections were the first to be served in Greenstone3 . When we came
to do MG collections, all we had to do was write some new service classes that
interacted with MG instead of MGPP. Because these collections used the same
type of services, this was all we had to do. The format of the configuréites
was similar, they just specified MG serviceRack classes rather than M@#2P o

The XML Sample Texts (gberg) collection, however, was done quite drfithr
to the standard collections. New services were provided to search tHmsata
(built with Lucene) and to provide the documents and parts of documernitsy (us
XSLT to transform the raw XML files). The collectionConfig file had someaextr
information in it: a list of the documents in the collection along with their Titles.
Because the standard collection class has no notion of document lists,cassw
was created (org.greenstone.gsdi3.collection.XMLCollection). This cldsssis
cally the same as a standard collection class except that it looks for ard &tor
memory the documentList from the collectionConfig file.

To tell Greenstone to load up a different type of collection class, we use an
other configuration fileet ¢/ col I ecti onl ni t. xm . This specifies the name of the
collection class to use. Currently, this is all that is specified in that file, but yo
may want to add parameters for the class etc.

<col l ectionlnit class="XMCollection"/>

The display for the collection is also quite different. The home page for the
collection displays the list of documents. To achieve this, the describensspo
from the collection had to include the list, and a new XSLT was written for the
collection that displayed this. Collection XSLT should be put in the transform
directory of the collectiotf.

Document display is significantly different to standard Greenstone .eTdrer
two modes of display: table of contents mode, and content mode. Clicking on a
document link from the collection home page takes the user to the table of tonten
for the collection. Clicking on one of the sections in the table of contents takes
them to a display of that section. To facilitate this, not only do we need newWlr XSL
files , we also needed a new action. XMLDocumentAction was created,gbdt u
two subactions, toc and text, for the different modes of display.

The Receptionist was told about this new action by the addition of the following
element to the interfaceConfig.xml file:

<action nanme='xd' class=" XM_Docunent Acti on’ >
<subaction nanme="toc’ xslt="docunent-toc.xsl’'/>

1%These are currently only used when running Greenstone in a non-distifashion, but it will
be added in properly at some stage

62

<subaction nane="text’ xslt='docunent-content.xsl’'/>
</ action>

XSLT files are linked to subactions rather than the action as a whole. The
collection supplies the two XSLT files written appropriately for the data it costain

All links that link to the documents have to be changed to use the xd action
rather than the standard d action. These include the links from the homegpaige
the links from query results.

Querying of the collection is almost the same as usual. The query service pro
vides a list of parameters, does the query and then sends back a listurhelat
identifiers. The standard query action was fine for this collection. Thegehac-
curs in the way that the results are displayed—this is accomplished usingatfor
statement supplied in the collectionConfig file inside the search node.
<sear ch>

<f or mat >
<gsf:tenpl ate mat ch="docunent Node" >

<xsl : par am nane="col | Nane"/ >

<xsl : param nane="servi ceNane"/ >

<td>

<a href="{$library_nane}?a=xd&anp; sa=t ext &anp; c={ $col | Nane} &
anp; d={ @odel D} &anp; p. a=q&anp; p. s={ $ser vi ceNane} " >
<xsl : choose>
<xsl :when test="netadat aLi st/ netadata[@ane="Title]">
<gsf:netadata nane="Title"/>
</ xsl : when>
<xsl : ot herw se>(section)</xsl: ot herw se>
</ xsl : choose>
</ a>
</ b> from <a href="{$library_nane}?a=xd&anp; sa=t oc&anp;
c={ $col | Nane} &anp; d={ @odel D}. rt &np; p. a=q&anp; p. s={ $ser vi ceNane} " >
<gsf:netadata name="Title" sel ect="root"/>
</td>
</ gsf:tenpl ate>
</ f ormat >
</ search>

Instead of displaying an icon and the Title, it displays the Title of the section
and the title of the document. Both of these are linked to the document: the section
title to the content of that section, the document title to the table of contents for
the document. Because these require non-standard arguments to the titese
parts of the template are written in XSLT not Greenstone format languages As
shown here it is perfectly feasible to write a format statement that include$ XS
mixed in with Greenstone format elements.

The document display uses CSS to format the output—these are kept in the
collection and specified in the collections XSLT files. The documents alsdfgpec
DTD files. Due to the way we read in the XML files, Tomcat sometimes has
trouble locating the DTDs. One option is to make all the links absolute links to
files in the collection folder, the other option is to put them in Greenstone 's DTD
folder $GSDL3SRCHOMVE/ r esour ces/ dt d.

63

4.5 The gs2 Interface

The library seen ahtt p: // www. gr eenst one. or g/ gr eenst one3/ nzdl is like a
mirror to htt p: // www. nzdl . or g—it aims to present the same collections, in the
same way but using Greenstone3 instead of Greenstone2 . It usesaangwedl)
with a new interface (nzdl) which is based on the gs2 interface. The weklgml
had a new servlet entry in it to specify the combination of nzdl site and ntat in
face.

The site was created by making a directory called nzdl in the sites folder. A
siteConfig file was created. Because it is running on Linux, we were abiktto
all the collections in the old Greenstone installation. The comvelitfrom_gs2.pl
script was run over all the collections to produce the new XML configundties.

The gs2 interface was created to be used by this site (and is now a standard
part of Greenstone). In many cases, creating a new interface justeeghe new
images and XSLT to be added to the new directory(see Sections 1.4 and@itiish).
gs2 interface required a bit more customization.

The standard Greenstone3 navigation bar lists all the services availabie fo
collection. In Greenstone2 , the navigation bar provides the search pptidn
the different classifiers. This is not service specific, but hard coddide search
and classifiers. The XSLT that produces the navigation bar neededattebed to
produce this. The standard receptionist (DefaultReceptionist) gatligts hit of
extra information for each page of XML before transforming it: this is the list o
services for the collection and their display information, allowing the sentizes
be listed along the navigation bar. This is information that is needed by eagey p
(except for the library home page) and therefore is obtained by thetrenist
instead of by each action. The nzdl interface uses the classifier listahascin
the ClassifierBrowse service description to display teh list of classifiers.

The nzdl interface extends the gs2 interface to provide a differenirigdtome
page and an extra static 'gsdl’ page.

64

5 Distributed Greenstone

Greenstone is designed to run in a distributed fashion. One Greensttaikation
can talk to several sites on different computers. This requires somefsayn-
munication protocol. Any protocol can be used, currently we have a singAd>S
protocol.

more explanation..

Library
Serviet

Receptionist,

Figure 10: A distributed digital library configuration running over sevseavers

We have used Apache Axis SOAP implementation. This is run as a servlet
in Tomcat. Axis is set up during installation of Greenstone. For more details
about SOAP in Greenstone, see Appendix C. Debugging soap is dabsoribp-
pendix C.1.

5.1 Serving a site using soap

A web service for localsite comes with Greenstone. However, it is not deglo
by default. To deploy it, run ruant depl oy-1ocal site. If you want to set up
web services for other sites, rant soap- depl oy-site. This will prompt you
for the sitename (its directory name), and a siteuri - a unique identifier favebe
service. Tomcat needs to be running for this to work, and you need &ihstalled
the Greenstonesource code.

The ant target deploys the service for the site specified. A resouréesfileenane>. wsdd)
is created which is used to specify the service. It can be foup@DL3HOVE/ r esour ces/ soap,
and is generated fromi t e. wsdd. t enpl at e.

The address of the new SOAP service will be tomcatserver-addressstpae3/services/sitename,
for example, www.greenstone.org/greenstone3/services/localsite.

65

5.2 Connecting to a site web service

There are two ways to use a remote site. First, if you have a local site ryrimémg
the site can also connect to other remote sites. In the siteConfig.xml file, gdu ne
to add a site element into the siteList element.

For example, to get siteA to talk to siteB, you need to deploy a SOAP server on
siteB, then add asi t e> element to thessi t eLi st > of SiteA'S si t eConfi g. xm
file (in $GSDL3HOVE/ si t es/ si t eAl si t eConfi g. xni).

In the<si t eLi st > element, add the following (substituting the chosen site uri
for siteBuri):

<site nane="siteBuri"
address="http://| ocal host: 8080/ gr eenst one3/ servi ces/siteBuri"
type="soap"/>

(Note that localhost and 8080 should be changed to the values youdentere
when installing Greenstone3. Localhost will only work for servers onsthee
machine.).

If you have changed the siteConfig.xml file for a site that is running, it will
need to be reconfigured. Either restart Tomcat, or reconfigure thWRL: e.g.
http:/ /1 ocal host: 8080/ greenst one3/ | i brary?a=s&sa=c. Several sites can be
connected to in this manner.

The second option is if you have a receptionist set up on a machine where
you have no site, and you only want to connect to a single remote site. draftea
using sitename in the servlet initialisation parameters (in $GSDL3HOME/WEB-
INF/web.xml), you can specify rematate name, remotssite type and remoteite address.
A communicator object will be set up instead of a MessageRouter and thie-rec
tionist will talk to the communicator.

66

A Using Greenstone3 from CVS

Greenstone3 is also available via CVS. You can download the latest verfdion
code. This is not guaranteed to be stable, in fact it is likely to be unstable. Th
advantage of using CVS is that you can update the code and get the leest fi
Note that you will need the Java 2 SDK, version 1.4.0 or higher, and Ant
(Apache’s Java based build tool, http://ant.apache.org) installed.
To check out the Greenstone code, use:

cvs -d :pserver:cvs_anon@vs. scns. wai kat 0. ac. nz: 2402/ usr/ | ocal /
gl obal -cvs/ gsdl -src co -P greenstone3

If you need it, the password for anonymous CVS acceaadsynous. Note
that some older versions of CVS have trouble accessing this repositery dine
port number being present. We are using version 1.11.1p1.

Greenstone is built and installed using Ant (Apache’s Java based bulld too
http://ant.apache.org). You will need a Java Development Environment (1.4 o
higher), and Ant installed to use Greenstone. You can download Ami fro
http://ant. apache. or g/ bi ndownl oad. cgi . Make sure that the environment vari-
ables JAVAHOME and ANT.HOME are set.

In the gr eenst one3 directory, you can runant’ which will give you a help
message. Runningnt -proj ect hel p’ gives a list of the targets that you can run
— these do various things like compile the source code, startup the server etc

TheREADME. t xt file has up-to-date instructions for installing from CVS. Briefly,
for a first time install, runant prepare install’.

The filebui | d. properti es contains various parameters that can be set by the
user. Please check these settings before running the installation protess-
stall process will ask you if you accept the properties before starting.amon-
interactive version of the install, rurant - Dproperti es. accept ed=yes install’

To log the outputin build.log, runant - Dproperti es. accept ed=yes -l ogfile
build.log install’

Compilation includes Java and C/C++. On Windows, you will need to have Vi-
sual Studio or equivalent installed. Please checkdgi | e. wi ndows. c++. set up
property in build.properties — make sure it is set to the setup script of V&tual
dio.

Note: gs3- set up sets the environment variableSDL3HOVE, GSDL3SRCHOME,
CLASSPATH, PATH, JAVA HOME and needs to be done in a shell before doing col-
lection building etc.

To run the library, use thgs3- server. sh/ bat shell scripts.

67

B Tomcat

Tomcat is a servlet container, and Greenstone3 runs as a servletiinside

The file $GSDL3SRCHOVE/ packages/ t ontat / conf/ server . xnl is the Tomcat
configuration file. A context for Greenstone3 is given by the file
$CGSDL3SRCHOVE/ packages/tontat/ conf/ Catal i na/l ocal host/ greenst one3. xm .
This tells Tomcat where to find the web.xml file, and what URbrgenst one3)
to give it. Anything inside the context directory is accessible via Tofcdtor
example, the index.html file that lives $&SDL3HOMVE can be accessed through the
URL | ocal host : 8080/ gr eenst one3/ i ndex. ht M . The gs2mgdemao collection’s
images can be accessed through
| ocal host: 8080/ greenst one3/ si tes/| ocal site/collect/gs2ngdeno/i mages/.

Greenstone sets up Tomcat to run on port 8080 by default. To changgdhis
can edit the tomcat.port property in build.properties. If you do this befataliing
Greenstone, then running 'ant install’ will use the new port number. df want
to change it later on, shutdown tomcat, run ‘ant configure’, then wherrgstart
tomcat it will use the new port.

Note: Tomcat must be shutdown and restarted any time you make changes in
the following for those changes to take effect:

o $GSDL3HOVE/ VEEB- | NF/ web. xm
e $GSDL3SRCHOME/ packages/ t ontat/ conf/server. xm
e any classes or jar files used by the servlets

On startup, the servlet loads in its collections and services. If the site or col-
lection configuration files are changed, these changes will not taket affél the
site/collection is reloaded. This can be done through the reconfiguraticcages
(see Section 1.7), or by restarting Tomcat.

We have disabled following symlinks for the greenstone servlet. To enable it,
edit$GSDL3SRCHOVE/ packages/ t ontat/ conf/ Cat al i na/ | ocal host/ gr eenst one3. xm
and set "allowLinking’ to true.

By default, Tomcat allows directory listings. To disable this, change the ’list-
ings’ parameter to false in the default servlet definition, in Tomcat's web.enl fi
($GSDL3SRCHOVE/ packages/ t oncat / conf / web. xm):

We have set the greenstone context to be reloadable. This means that if a
class or resource file in web/WEB-INF/lib or web/WEB-INF/classes chantihe
servlet will be reloaded. This is useful for development, but should tmetuoff
for production mode (set the 'reloadable’ attribute to false).

Tomcat uses a Manager to handle HTTP session information. This may be
stored between restarts if possible. To use a persistent session handliager,
uncomment theManager > element in
$GSDL3SRCHOVE/ packages/ t ontat / conf/ server. xm . For the default manager,
session information is stored in the work directory:

can we use .htaccess files to restrict access??

68

$GSDL3SRCHOVE/ packages/ t ontat / wor k/ Cat al i na/ | ocal host/ gr eenst one3/ SESSI ONS. ser .
Delete this file to clear the cached session info. Note that Tomcat needshatbe s
down to delete this file.

B.1 Proxying Tomcat with apache

Instead of incorporating servlet support into your existing web seavezasy alter-
native is to proxy Tomcat. Thie t p: // ww. gr eenst one. or g/ gr eenst one3 Site
uses apache to proxy Tomcat. ProxyPass and ProxyPassRevecsiahrneed to
be added to the Virtualhost description for the www.greenstone.orgrserve

<Vi rtual Host XxX.XX.XX.XX>
Server Name www. gr eenst one. org

ProxyPass /greenstone3 http://puka.cs. wai kat 0. ac. nz: 8080/ gr eenst one3
ProxyPassReverse /greenstone3 http://puka. cs. wai kat 0. ac. nz: 8080/ gr eenst one3
</ Vi rt ual Host >

In our example, the Greenstone3 servlet can be accessed at
htt p: // www. gr eenst one. or g/ gr eenst one3/ | i brary, instead of at
http:// puka. cs. wai kat 0. ac. nz: 8080/ gr eenst one3/ | i brary, which is not pub-
lically accessible.

B.2 Running Tomcat behind a proxy

Almost everything works fine when Tomcat is running behind a proxy. drig

time this causes trouble is if the servlet itself needs to make external HTTB@onn
tions. We do this in the infomine demo collection for example. One of the service
classes sends HTTP requests to the infomine database at riverside. tl8inis
going through the proxy, a username and password is needed. It ssiffiotent

to prompt the user for a password because they are unlikely to havesaquds

for the particular proxy that Tomcat is using. What we have done aeptés to

put a proxy element in the siteConfig.xml file. Here you have to enter a suitable
username and password for the proxy server. Unfortunately thesenggred in
plain text. And the file is viewable via the servlet. So we need a better solution.

69

C SOAP

Greenstone uses the Apache Axis SOAP implementation for distributed commu-
nications. AXxis runs as a servlet inside Tomcat, and SOAP web servindseca
deployed by this Axis servlet. The Greenstone installation process setasifoA
Tomcat, but does not deploy any services.

To deploy the SOAP service for localsite, rait depl oy-1 ocal site.

To deploy a SOAP service for other sites, Bt soap- depl oy-site

This will prompt you for the sitename (the site’s directory name), and a unique
URI for the site. It creates a new SOAPServer class for the site
($GSDL3SRCHOME/ st ¢/ j aval or g/ gr eenst one/ gsdl 3/ SOAPSer ver <si t enanme>. j ava),
creates a resource file for deploymest{DL3SRCHOVE/ r esour ces/ soap/ <si t enane>. wsdd),
and then tries to deploy the service.

Information about deployed services is maintained between Tomcat session
you only need to deploy something once. To undeploy a sitesrus@oap- undepl oy- si t e.

The axis services can be accesseaaal host : 8080/ gr eenst one3/ i ndex. j sp.

C.1 Debugging SOAP

If you need to debug the SOAP stuff for some reason, or just want todothe
SOAP messages that are being passed back and forth, you can u€é&themitor.

This intercepts messages coming in to one port, displays them, and passés them
another port. To run it, type:

java -cp $GSDL3HOVE/ VEEB- I NF/ | i b/ axi s. j ar
org. apache. axi s. utils.tcpnon

The listen port is the port that you want the monitor to be listening on. It should
'act as’ a Listener, with target hostname 127.0.0.1 (localhost), and {aogethe
port that Tomcat is running on (8080). You need to modify the addre=s s
talk to the SOAP service. For example, if you want to monitor traffic between
the gateway site and the localsite SOAP server, you will need to edit gateway’
siteConfig.xml file and change the port number (in the site element) to whatever
you have chosen as the listen port.

For example, in the Admin panel of TCPMonitor the Target Hostname might
be 127.0.0.1, and the Target Port # 8080. Set the Listen Port # to beedifport,
such as 8070 and click Add. This produces a new tab panel whereayosee the
messages arriving at port 8070 before being forwarded to po&. 881 then need
to set your test request from your SOAP application to arrive at @ &nd you
will see copies of the messages in the new tab panel.

70

D Tidying up the formatting for imported Greenstone2

collections

D.1 Format statements: Greenstone?2 vs Greenstone3

The following table shows the Greenstone2 format elements, and theiaénis

in Greenstone3

Table 12: Greenstone3 equivalents of Greenstone2 format statements

Greenstone2 Greenstone3
[Text] <gsf:text/>
[num <gsf: met adata nanme="docnum />
[Tink][/1ink] <gsf:link></gsf:link>or

<gsf:link type="document’ ></gsf:Ilink>
[srclink][/srclink] <gsf:link type=" source’ ></gsf:link>
[icon] <gsf:icon/>or

<gsf:icon type= docunment’ />
[srcicon] <gsf:icon type= source’' />

[Titl e] (metadata)

[parent: Title]
[parent (Al l):Title]
[parent (Top): Title]
[parent(Al’': "):Title]

[sibling:dc.Title]
[sibling(AIl’: "):Title]

{O H{[dc.Title],
[dIs. Title], [Title]}

{IfH{[parent:Title],
[parent:Title], [Title]}

{I f }{[Subj ect],
<t d>[Subj ect] </ td>}

<gsf:netadata nane="Title' />or
<gsf: metadata name="Titl e’ select="current’/>
<gsf:metadata nane="Titl e’ select="parent’ />
<gsf:metadata nanme="Titl e’ sel ect="ancestors’'/>
<gsf: metadata name="Title' select="root’ />
<gsf:metadata nane="Titl e’ select="ancestors’
separator=": ' [>
<gsf:metadata name="dc.Title pos='first’
<gsf:nmetadata nane="Title’
separator=": ' [>
<gsf: choose- net adat a>
<gsf:netadata nane="dc.Title />
<gsf:netadata nanme="dls. Title' />
<gsf:netadata name="Title />
</ gsf: choose- net adat a>
<gsf: choose- net adat a>
<gsf:netadata name="Title' select="parent’/>
<gsf:netadata nane="Title' />
</ gsf: choose- net adat a>
<gsf:swi tch>
<gsf: netadata name=" Subject’ />
<gsf:when test="exists’ >
<t d><gsf: nmet adat a name=' Subj ect’/></td>
</ gsf:when></gsf:sw tch>

D.2 Cleaning up macros

Here we show some of the replace items that have been used for Grehston

collections.

Getting rid of silly backslashes:

<repl ace scope="text’ macro="\\2\\\(" text="\("/>

71

Macro resolving using resource bundles and metadata:

<repl ace scope=' netadata’ nacro="_mnmgazi nes_" bundl e=" NZDLMacr 0s"
key="Magazi nes"/ >
<repl ace scope="all’ macro="_thisO D' metadata="archivedir’/>
<repl ace nmacro="_httpcol ling_"
text="sites/local site/collect/fol ktal e/index/assoc"/>

Fixing up broken external links:

<repl ace macro="_httpextlink_&anp;rl =1&anp; href ="

t ext =" ?a=d&anp; c=f ol kt al e&anp; s0. ext =1&anp; d="/>
<repl ace macro="_htt pext!link_&anp;rl =0&anp; href ="

t ext =" ?a=p&anp; sa=ht nl &np; c=f ol kt al e&anp; url ="/>

These two examples show how to deal with Greenstone2’s external linksacr
The first one is for a relative’ external link. In this case, the links are lWRL's
but they actually refer to Greenstone internal documents. So the GreeBdiok
is to the document, but with parameter s0.ext signifying that the d argument will
need translating before retrieving the content. The second example is @xruly
ternal link. This is translated into a HTML type page action, where the URL is

presented as a frame along with the collection header in a separate frame.
Sometimes we need to add in macros to be resolved in a second step:

<repl ace macro="_i conpdf _" scope="net adat a"
text="<ing title=" _texticonpdf_' src="interfaces/default/inmages/ipdf.gif’'/>"/>
<repl ace macro="_texti conpdf_" scope="netadata" bundl e="interface_gs2"
key="t exti conpdf"/>

72

